Abstract
Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for SNAr reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12C/13C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical SNAr reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
User-friendly software pipelines that can be used to measure and predict KIEs are freely available at www.github.com/ekwan/PyKIE and www.github.com/ekwan/PyQuiver. Raw NMR spectra and computed quasiclassical trajectories are available from the corresponding author upon reasonable request. All other data supporting the findings of this study are available within the Article and its Supplementary Information files.
References
Williams, A. Concerted Organic and Bio-Organic Mechanisms (CRC, Boca Raton, FL, 1999).
Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley-VCH, Weinheim, 2013).
Terrier, F. Rate and equilibrium studies in Jackson–Meisenheimer complexes. Chem. Rev. 82, 77–152 (1982).
Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).
Neumann, C. N., Hooker, J. M. & Ritter, T. Concerted nucleophilic aromatic substitution with 19F− and 18F−. Nature 534, 369–373 (2016).
Neumann, C. N. & Ritter, T. Facile C–F bond formation through a concerted nucleophilic aromatic substitution mediated by the PhenoFluor reagent. Acc. Chem. Res. 50, 2822–2833 (2017).
Lucchini, V., Modena, G. & Pasquato, L. An authentic case of in-plane nucleophilic vinylic substitution: the anionotropic rearrangement of di-tert-butyl thiirenium ions into thietium ions. J. Am. Chem. Soc. 115, 4527–4531 (1993).
Glukhovtsev, M. N., Pross, A. & Radom, L. Is SN2 substitution with inversion of configuration at vinylic carbon feasible? J. Am. Chem. Soc. 116, 5961–5962 (1994).
Lucchini, V., Modena, G. & Pasquato, L. SN2 and AdN-E mechanisms in bimolecular nucleophilic substitutions at vinyl carbon: the relevance of the LUMO symmetry of the electrophile. J. Am. Chem. Soc. 117, 2297–2300 (1995).
Okayama, T., Takino, T., Sato, K. & Ochiai, M. In-plane vinylic SN2 substitution and intramolecular β-elimination of β-alkylvinyl(chloro)-λ3-iodanes. J. Am. Chem. Soc. 120, 2275–2282 (1998).
Bach, R. D., Baboul, A. G. & Schlegel, H. B. Inversion vs. retention of configuration for nucleophilic substitution at vinylic carbon. J. Am. Chem. Soc. 123, 5787–5793 (2001).
Williams, A. Concerted mechanisms of acyl group transfer reactions in solution. Acc. Chem. Res. 22, 387–392 (1989).
Curran, T. P., Farrar, C. R., Niazy, O. & Williams, A. Structure activity studies on the equilibrium reaction between phenolate ions and 2-aryoxazolin-5-one—data consistent with a concerted acyl group transfer mechanism. J. Am. Chem. Soc. 102, 6828–6837 (1980).
Chrystiuk, E. & Williams, A. A single transition state in the transfer of methoxycarbonyl group between isoquinoline and substituted pyridines. J. Am. Chem. Soc. 109, 3040–3046 (1987).
Ba-Saif, S. A., Luthra, A. K. & Williams, A. Concertedness in acyl group transfer: a single transition state in acetyl transfer between phenolate ion nucleophiles. J. Am. Chem. Soc. 109, 6362–6368 (1987).
Ba-Saif, S. A., Luthra, A. K. & Williams, A. Concerted acetyl group transfer between substituted phenolate ion nucleophiles: variation of transition state structure as a function of substituent. J. Am. Chem. Soc. 111, 2647–2652 (1989).
Han, C. & Braumann, J. I. Gas phase nucleophilic displacement reactions of negative ions with carbonyl compounds. J. Am. Chem. Soc. 101, 3715–3724 (1979).
Kim, J. K. & Caserio, M. C. Acyl-transfer reactions in the gas phase: the question of tetrahedral intermediates. J. Am. Chem. Soc. 103, 2124–2127 (1981).
Guthrie, J. P. Concerted mechanism for alcoholysis of esters: an examination of the requirements. J. Am. Chem. Soc. 113, 3941–3949 (1991).
Guthrie, J. P. & Pike, D. C. Hydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazoles on esters: the question of concerted mechanisms for acyl transfer. Can. J. Chem. 65, 1951–1969 (1987).
Hengge, A. C. & Hess, R. A. concerted or stepwise mechanisms for acyl transfer reactions of p-nitrophenyl acetate? transition state structures from isotope effects. J. Am. Chem. Soc. 116, 11256–11263 (1994).
Blake, J. F. & Jorgensen, W. L. Ab initio study of the displacement reactions of chloride ion with formyl and acetyl chloride. J. Am. Chem. Soc. 109, 3856–3861 (1987).
Fox, J. M., Dmitrenko, O., Liao, L. & Bach, R. D. Computational studies of nucleophilic substitution at carbonyl carbon: the SN2 mechanism versus the tetrahedral intermediate in organic synthesis. J. Org. Chem. 69, 7317–7328 (2004).
Renfrew, A. H. M., Taylor, J. A., Whitmore, J. M. J. & Williams, A. A single transition state in nucleophilic aromatic substitution: reaction of phenolate ions with 2-(4-nitrophenoxy)-4,6-dimethoxy-1,3,5-triazine in aqueous solution. J. Chem. Soc. Perkin Trans. 2, 1703–1704 (1993).
Xu, S. et al. The DMAP-catalyzed acetylation of alcohols–a mechanistic study. Chem. Eur. J. 11, 4751–4757 2005).
Skoog, M. T. & Jencks, W. P. Reactions of pyridines and primary amines with N-phosphorylated pyridines. J. Am. Chem. Soc. 106, 7597–7606 (1984).
Bourne, N., Chrystiuk, E., Davis, A. M. & Williams, A. A single transition state in the reaction of aryl diphenylphosphinate esters with phenolate ions in aqueous solution. J. Am. Chem. Soc. 110, 1890–1895 (1988).
Bourne, N. & Williams, A. Evidence for a single transition state in the transfer of the phosphoryl group to nitrogen nucleophiles from pyridino-N-phosphonates. J. Am. Chem. Soc. 106, 7591–7596 (1984).
Buchwald, S. L., Friedman, J. M. & Knowles, J. R. Stereochemistry of nucleophilic displacement on two phosphoric monoesters and a phosphoguanidine: the role of metaphosphate. J. Am. Chem. Soc. 106, 4911–4916 (1984).
Andersen, K. K., Caret, R. I. & Karup–Nielsen, I. Nucleophilic substitution at tricoordinate sulfur(iv): stereochemistry of dialkylarylsulfonium salt formation from alkyl aryl sulfoxides. J. Am. Chem. Soc. 96, 8026–8032 (1974).
Bourne, N., Hopkins, A. & Williams, A. Single transition state for sulfuryl group transfer between pyridine nucleophiles. J. Am. Chem. Soc. 107, 4327–4331 (1985).
D’Rozario, P., Smyth, R. L. & Williams, A. Evidence for a single transition state in the intramolecular transfer of a sulfonyl group between oxyanion donor and acceptors. J. Am. Chem. Soc. 106, 5027–5028 (1984).
Deacon, T., Farrar, C. R., Sikkel, B. J. & Williams, A. Reactions of nucleophiles with strained cyclic sulfonate esters: Bronsted relationships for rate and equilibrium constants for variation of phenolate anion nucleophile and leaving group. J. Am. Chem. Soc. 100, 2525–2534 (1978).
Koh, H.-J. & Um, I.-H. Kinetic study on quinuclidinolysis of O-phenyl O-Y-substituted-phenyl thionocarbonates: effects of changing nonleaving group from thionobenzoyl to phenyloxythionocarbonyl on reactivity and transition-state structure. Bull. Korean Chem. Soc. 38, 1091–1096 (2017).
Renfrew, A. H. M., Rettura, D., Taylor, J. A., Whitmore, J. M. J. & Williams, A. Stepwise versus concerted mechanisms at trigonal carbon: transfer of the 1,3,5-triazinyl group between aryl oxide ions in aqueous solution. J. Am. Chem. Soc. 117, 5484–5491 (1995).
Cullum, N. R. et al. Effective charge on the nucleophile and leaving group during the stepwise transfer of the triazinyl group between pyridines in aqueous solution. J. Am. Chem. Soc. 117, 9200–9205 (1995).
Renfrew, A. H. M., Taylor, J. A., Whitmore, J. M. J. & Williams, A. Timing of bonding changes in fundamental reactions in solution: pyridinolysis of a triazinylpyridinium salt. J. Chem. Soc. Perkin Trans. 2 0, 2383–2384 (1994).
Kikushima, K., Grellier, M., Ohashi, M. & Ogoshi, S. Transition-metal-free hydrodefluorination of polyfluoroarenes by a concerted nucleophilic aromatic substitution with a hydrosilicate. Angew. Chem. Int. Ed. 56, 16191–16196 (2017).
Ong, D. Y., Tejo, C., Xu, K., Hirao, H. & Chiba, S. Hydrodehalogenation of haloarenes by a sodium hydride–iodide composite. Angew. Chem. Int. Ed. 56, 1840–1844 (2017).
Sun, H. & DiMagno, S. Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies. Angew. Chem. Int. Ed. 45, 2720–2725 (2006).
Zheng, Y.-J. & Bruice, T. C. On the dehalogenation mechanism of 4-chlorobenzoyl CoA by4-chlorobenzoyl CoA dehalogenase: insights from study on the nonenzymatic reaction. J. Am. Chem. Soc. 119, 3868–3877 (1997).
Baker, J. & Muir, M. The Meisenheimer model for predicting the principal site of for nucleophilic substitution in aromatic perfluorocarbons—generalization to include ring-nitrogen atoms and non-fluorine ring substituents. Can. J. Chem. 88, 588–597 (2010).
Goryunov, L. et al. Di- and tri-fluorobenzenes in reactions with Me2 EM (E = P, N; M = SiMe3, SnMe3, Li) reagents: evidence for a concerted mechanism of aromatic nucleophilic substitution. Eur. J. Org. Chem. 2010, 1111–1123 (2010).
Cairns, A. G., Senn, H. M., Murphy, M. P. & Hartley, R. C. Expanding the palette of phenanthridinium cations. Chem. Eur. J. 20, 3742–3751 (2014).
Glukhovtsev, M. N., Bach, R. D. & Laiter, S. Single-step and multistep mechanisms of aromatic nucleophilic substitution of halobenzenes and halonitrobenzenes with halide anions: ab initio computational study. J. Org. Chem. 62, 4036–4046 (1997).
Giroldo, T., Xavier, L. A. & Riveros, J. M. An unusually fast nucleophilic aromatic displacement reaction: the gas-phase reaction of fluoride ions with nitrobenzene. Angew. Chem. Int. Ed. 43, 3588–3590 (2004).
Fernández, I., Frenking, G. & Uggerud, E. Rate-determining factors in nucleophilic aromatic substitution reactions. J. Org. Chem. 75, 2971–2980 (2010).
Liljenberg, M. et al. Predicting regioselectivity in nucleophilic aromatic substitution. J. Org. Chem. 77, 3262–3269 (2012).
Liljenberg, M., Brinck, T., Rein, T. & Svensson, M. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitutions of aromatic fluorides. Beil. J. Org. Chem. 9, 791–799 (2013).
Clayden, J., Greeves, N., Warren, S. in Organic Chemistry, 2nd edn, 518 (Oxford Univ. Press, Oxford, 2012).
Persson, J., Axelsson, S. & Matsson, O. Solvent dependent leaving group fluorine kinetic isotope effect in a nucleophilic aromatic substitution reaction. J. Am. Chem. Soc. 118, 20–23 (1996).
Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).
Claridge, T. D. High-Resolution NMR Techniques in Organic Chemistry (Elsevier, New York, NY, 2016).
Chan, J., Tang, A. & Bennett, A. J. A stepwise solvent-promoted SNi reaction of α-d-glucopyranosyl fluoride: mechanistic implications for retaining glycosyltransferases. J. Am. Chem. Soc. 134, 1212–1220 (2012).
Westaway, K. C. Determining transition state structure using kinetic isotope effects. J. Label. Compd Radiopharm. 50, 989–1005 (2007).
Matsson, O., Dybala-Defratyka, A., Rostkowski, M., Paneth, P. & Westaway, K. C. A theoretical investigation of α-carbon kinetic isotope effects and their relationship to the transition-state structure of SN2 reactions. J. Org. Chem. 10, 4022–4027 (2005).
Kwan, E. E., Park, Y., Besser, H. A., Anderson, T. L. & Jacobsen, E. N. Sensitive and accurate 13C kinetic isotope effect measurements enabled by polarization transfer. J. Am. Chem. Soc. 139, 43–46 (2017).
Papajak, E., Zheng, J., Xu, X., Leverentz, H. R. & Truhlar, D. G. Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 7, 3027–3034 (2011).
Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).
Karplus, M., Porter, R. & Sharma, R. Exchange reactions with activation energy. I. Simple barrier potential for (H, H2). J. Chem. Phys. 43, 3259–3287 (1965).
Melander, L. C. & Saunders, W. H. Reaction Rates of Isotopic Molecules (Wiley, New York, NY, 1980).
Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).
Shaik, S. S. & Hiberty, P. C. A Chemist’s Guide to Valence Bond Theory (Wiley, New York, NY, 2007).
Silverstein, T. P. Marcus theory: thermodynamics can control the kinetics of electron transfer reactions. J. Chem. Educ. 89, 1159–1167 (2012).
Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).
Marenich, A. V., Jerome, S. V., Cramer, C. J. & Truhlar, D. G. Charge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J. Chem. Theory Comput. 8, 527–541 (2012).
Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).
Glendening, E. D. et al. NBO 6.0 (Theoretical Chemistry Institute, 2013); http://nbo6.chem.wisc.edu/
Jackson, C. J. & Gazzolo, F. H. Am. Chem. J. 23, 376 (1900).
Meisenheimer, J. Ueber reactionen aromatischer nitrokörper. Justus Liebigs Ann. Chem. 323, 205–246 (1902).
Helmus, J. J. nmrglue www.nmrglue.com
Frisch, M. J. et al. Gaussian 09 and 16 (Gaussian Inc.).
Kwan, E. E. & Anderson, T. L. PyQuiver www.github.com/ekwan/pyquiver
Zheng, J. et al. GAUSSRATE 2016 (University of Minnesota).
Zheng, J. et al. POLYRATE 2016 (University of Minnesota).
Neese, F. The ORCA program system. Wiley Inter. Rev. Comp. Mol. Sci. 2, 73–78 (2012).
Takano, Y. & Houk, K. N. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 1, 70–77 (2005).
Kongsted, J. & Mennucci, B. How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models. J. Phys. Chem. A. 111, 9890–9900 (2007).
Cappelli, C., Monti, S., Scalmani, G. & Barone, V. On the calculation of vibrational frequencies for molecules in solution beyond the harmonic approximation. J. Chem. Theory Comput. 6, 1660–1669 (2010).
Zimmerman, P. Reliable transition state searches integrated with the growing string method. J. Chem. Theory Comput. 9, 3043–3050 (2013).
Acknowledgements
This work was supported by the National Institutes of Health (GM-43214). The authors thank W.F. Reynolds and D.A. Singleton for helpful discussions, and S.G. Huang and W. E. Collins for assistance with NMR spectroscopy.
Author information
Authors and Affiliations
Contributions
E.E.K., Y.Z. and H.A.B. developed the isotope effect methodology. Y.Z. synthesized the materials. E.E.K. and H.A.B. carried out the calculations. E.E.K and E.N.J. wrote the manuscript. E.N.J. guided the research.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.
Supplementary information
Supplementary information
Comprehensive information on compound synthesis and characterization, NMR pulse sequences, KIE calculations and computational results
NMR archive file
Contains data related to the NMR experiments performed in this study including sample NMR spectra, processing software, raw results, and Mathematica code to calculate the KIE error bars. Readme.txt files with detailed descriptions of folder contents are included in each subfolder within the zipped file
Calculations archive file
Contains the many computational structures used in this study to generate KIE predictions and potential energy surfaces. Readme.txt files with detailed descriptions of folder contents are included in each subfolder within the zipped file
Rights and permissions
About this article
Cite this article
Kwan, E.E., Zeng, Y., Besser, H.A. et al. Concerted nucleophilic aromatic substitutions. Nature Chem 10, 917–923 (2018). https://doi.org/10.1038/s41557-018-0079-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-018-0079-7
This article is cited by
-
Electrochemical synthesis of biaryls by reductive extrusion from N,N’-diarylureas
Nature Communications (2023)
-
Opportunities with calcium Grignard reagents and other heavy alkaline-earth organometallics
Nature Reviews Chemistry (2023)
-
The interplay of polar effects in controlling the selectivity of radical reactions
Nature Synthesis (2022)
-
Unusual KIE and dynamics effects in the Fe-catalyzed hetero-Diels-Alder reaction of unactivated aldehydes and dienes
Nature Communications (2020)
-
19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution
Nature Catalysis (2020)