Abstract

Metal hydrides are key intermediates in catalytic proton reduction and dihydrogen oxidation. There is currently much interest in appending proton relays near the metal centre to accelerate catalysis by proton-coupled electron transfer (PCET). However, the elementary PCET steps and the role of the proton relays are still poorly understood, and direct kinetic studies of these processes are scarce. Here, we report a series of tungsten hydride complexes as proxy catalysts, with covalently attached pyridyl groups as proton acceptors. The rate of their PCET reaction with external oxidants is increased by several orders of magnitude compared to that of the analogous systems with external pyridine on account of facilitated proton transfer. Moreover, the mechanism of the PCET reaction is altered by the appended bases. A unique feature is that the reaction can be tuned to follow three distinct PCET mechanisms—electron-first, proton-first or a concerted reaction—with very different sensitivities to oxidant and base strength. Such knowledge is crucial for rational improvements of solar fuel catalysts.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

  2. 2.

    Graetzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 14, 376–384 (1981).

  3. 3.

    Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

  4. 4.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

  5. 5.

    Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

  6. 6.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

  7. 7.

    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

  8. 8.

    Dempsey, J. L., Winkler, J. R. & Gray, H. B. Proton-coupled electron flow in protein redox machines. Chem. Rev. 110, 7024–7039 (2010).

  9. 9.

    Hay, S. & Scrutton, N. S. Good vibrations in enzyme-catalysed reactions. Nat. Chem. 4, 161–168 (2012).

  10. 10.

    Dogutan, D. K., McGuire, R. & Nocera, D. G. Electocatalytic water oxidation by cobalt(iii) hangman β-octafluoro corroles. J. Am. Chem. Soc. 133, 9178–9180 (2011).

  11. 11.

    Bediako, D. K. et al. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins. Proc. Natl Acad. Sci. USA 111, 15001–15006 (2014).

  12. 12.

    Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

  13. 13.

    O’Hagan, M. et al. Proton delivery and removal in [Ni(PR 2NR′ 2)2]2+ hydrogen production and oxidation catalysts. J. Am. Chem. Soc. 134, 19409–19424 (2012).

  14. 14.

    Zhang, S., Appel, A. M. & Bullock, R. M. Reversible heterolytic cleavage of the H–H bond by molybdenum complexes: controlling the dynamics of exchange between proton and hydride. J. Am. Chem. Soc. 139, 7376–7387 (2017).

  15. 15.

    Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Pendant acid–base groups in molecular catalysts: H-bond promoters or proton relays? Mechanisms of the conversion of CO2 to CO by electrogenerated iron(0)porphyrins bearing prepositioned phenol functionalities. J. Am. Chem. Soc. 136, 11821–11829 (2014).

  16. 16.

    Lilio, A. M. et al. Incorporation of pendant bases into Rh(diphosphine)2 complexes: synthesis, thermodynamic studies, and catalytic CO2 hydrogenation activity of [Rh(P2N2)2]+ complexes. J. Am. Chem. Soc. 137, 8251–8260 (2015).

  17. 17.

    Seu, C. S., Appel, A. M., Doud, M. D., DuBois, D. L. & Kubiak, C. P. Formate oxidation via β-deprotonation in [Ni(PR 2NR′ 2)2(CH3CN)]2+ complexes. Energy Environ. Sci. 5, 6480–6490 (2012).

  18. 18.

    Roy, S. et al. Molecular cobalt complexes with pendant amines for selective electrocatalytic reduction of carbon dioxide to formic acid. J. Am. Chem. Soc. 139, 3685–3696 (2017).

  19. 19.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

  20. 20.

    Pegis, M. L. et al. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2, 850–856 (2016).

  21. 21.

    Auer, B., Fernandez, L. E. & Hammes-Schiffer, S. Theoretical analysis of proton relays in electrochemical proton-coupled electron transfer. J. Am. Chem. Soc. 133, 8282–8292 (2011).

  22. 22.

    Bourrez, M., Steinmetz, R., Ott, S., Gloaguen, F. & Hammarström, L. Concerted proton-coupled electron transfer from a metal–hydride complex. Nat. Chem. 7, 140–145 (2015).

  23. 23.

    Elgrishi, N., Kurtz, D. A. & Dempsey, J. L. Reaction parameters influencing cobalt hydride formation kinetics: implications for benchmarking H2-evolution catalysts. J. Am. Chem. Soc. 139, 239–244 (2017).

  24. 24.

    Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

  25. 25.

    Olsson, M. H. M., Siegbahn, P. E. M. & Warshel, A. Simulating large nuclear quantum mechanical corrections in hydrogen atom transfer reactions in metalloenzymes. J. Biol. Inorg. Chem. 9, 96–99 (2004).

  26. 26.

    Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).

  27. 27.

    Rhile, I. J. & Mayer, J. M. One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer. J. Am. Chem. Soc. 126, 12718–12719 (2004).

  28. 28.

    Markle, T. F., Rhile, I. J. & Mayer, J. M. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines. J. Am. Chem. Soc. 133, 17341–17352 (2011).

  29. 29.

    Zhang, M.-T., Irebo, T., Johansson, O. & Hammarström, L. Proton-coupled electron transfer from tyrosine: a strong rate dependence on intramolecular proton transfer distance. J. Am. Chem. Soc. 133, 13224–13227 (2011).

  30. 30.

    Glover, S. D., Parada, G. A., Markle, T. F., Ott, S. & Hammarström, L. Isolating the effects of the proton tunneling distance on proton-coupled electron transfer in a series of homologous tyrosine-base model compounds. J. Am. Chem. Soc. 139, 2090–2101 (2017).

  31. 31.

    Belkova, N. V., Epstein, L. M., Filippov, O. A. & Shubina, E. S. Hydrogen and dihydrogen bonds in the reactions of metal hydrides. Chem. Rev. 116, 8545–8587 (2016).

  32. 32.

    Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Angew. Chem. Int. Ed. 3, 1–19 (1964).

  33. 33.

    Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta - Rev. Bioenerg. 811, 265–322 (1985).

  34. 34.

    Irebo, T., Zhang, M.-T., Markle, T. F., Scott, A. M. & Hammarström, L. Spanning four mechanistic regions of intramolecular proton-coupled electron transfer in a Ru(bpy)3 2+–tyrosine complex. J. Am. Chem. Soc. 134, 16247–16254 (2012).

  35. 35.

    Tilset, M. & Parker, V. D. Solution homolytic bond dissociation energies of organotransition-metal hydrides. J. Am. Chem. Soc. 111, 6711–6717 (1989).

  36. 36.

    Ryan, O. B., Tilset, M. & Parker, V. D. Chemical and electrochemical oxidation of group 6 cyclopentadienylmetal hydrides. First estimates of 17-electron metal–hydride cation-radical thermodynamic acidities and their decomposition of 17-electron neutral radicals. J. Am. Chem. Soc. 112, 2618–2626 (1990).

  37. 37.

    Meyer, T. J. & Caspar, J. V. Photochemistry of metal-metal bonds. Chem. Rev. 85, 187–218 (1985).

  38. 38.

    Parker, V. D., Handoo, K. L., Roness, F. & Tilset, M. Electrode potentials and the thermodynamics of isodesmic reactions. J. Am. Chem. Soc. 113, 7493–7498 (1991).

  39. 39.

    Jordan, R. F. & Norton, J. R. Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 1. Periodic trends in Group VI complexes and substituent effects in osmium complexes. J. Am. Chem. Soc. 104, 1255–1263 (1982).

  40. 40.

    Edidin, R. T., Sullivan, J. M. & Norton, J. R. Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 4. Kinetic acidities toward aniline and their use in identifying proton-transfer mechanisms. J. Am. Chem. Soc. 109, 3945–3953 (1987).

  41. 41.

    Kaljurand, I. et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pK a units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005).

  42. 42.

    Markle, T. F., Tronic, T. A., DiPasquale, A. G., Kaminsky, W. & Mayer, J. M. Effect of basic site substituents on concerted proton–electron transfer in hydrogen-bonded pyridyl–phenols. J. Phys. Chem. A. 116, 12249–12259 (2012).

  43. 43.

    Rhile, I. J. et al. Concerted proton–electron transfer in the oxidation of hydrogen-bonded phenols. J. Am. Chem. Soc. 128, 6075–6088 (2006).

Download references

Acknowledgements

T.L. acknowledges S.D. Glover, R. Fernandez-Teran and S. Wang for fruitful discussions. This work was supported by The Swedish Research Council (grant no. 2016-04271) and The Knut and Alice Wallenberg Foundation (grant no. 2011.0067). Correspondence and requests for materials should be addressed to L.H.

Author information

Affiliations

  1. Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden

    • Tianfei Liu
    • , Meiyuan Guo
    • , Andreas Orthaber
    • , Reiner Lomoth
    • , Marcus Lundberg
    • , Sascha Ott
    •  & Leif Hammarström

Authors

  1. Search for Tianfei Liu in:

  2. Search for Meiyuan Guo in:

  3. Search for Andreas Orthaber in:

  4. Search for Reiner Lomoth in:

  5. Search for Marcus Lundberg in:

  6. Search for Sascha Ott in:

  7. Search for Leif Hammarström in:

Contributions

T.L., S.O. and L.H. planned the research and prepared the manuscript. T.L. performed the experiments. R.L. supervised the electrochemistry experiments. A.O. conducted the X-ray diffraction analyses and refined structures. M.G. and M.L. performed theoretical calculations and analyses. All authors edited and reviewed the manuscript in the context of their contributions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Leif Hammarström.

Supplementary information

  1. Supplementary information

    Supplementary Methods, Supplementary Figures 1–46, Supplementary Tables 1–7, Supplementary Experimental Data, Supplementary Theoretical Data

  2. Crystallographic data

    CIF for compound 3a; CCDC reference: 1552847

  3. Crystallographic data

    CIF for compound 3d; CCDC reference: 1552848

  4. Crystallographic data

    CIF for compound 3e; CCDC reference: 1552849

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0076-x