Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis

Abstract

Achieving site-selectivity in arene functionalization that is complementary to the site-selectivity from electrophilic aromatic substitution reactions has been a long-standing quest in organic synthesis. Palladium/norbornene cooperative catalysis potentially offers a unique approach to this problem, but its use has been hampered by the ortho constraint, which is the requirement of an ortho substituent for mono ortho functionalization of haloarenes. Here, we show that such a challenge could be addressed using a new class of bridgehead-modified norbornenes, thereby enabling a broadly useful strategy for arene functionalization with complementary site-selectivity. A range of ortho-unsubstituted aryl iodides, previously problematic substrates, can now be employed to provide mono ortho-functionalized products effectively. This method is applicable for late-stage functionalization of complex bioactive molecules at positions that are difficult to reach by conventional approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A quest for complementary site-selectivity in arene functionalization.
Fig. 2: Challenge and proposed strategy.
Fig. 3: An example of the ortho constraint.
Fig. 4: Use of para-substituted aryl iodides.
Fig. 5: Site-selectivity complementary to EAS reactions.

Similar content being viewed by others

References

  1. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C‒C bond formation via heteroatom-directed C‒H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C‒H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, J., De Sarkar, S. & Ackermann, L. meta- and para-selective C‒H functionalization by C‒H activation. Top. Organomet. Chem. 55, 217–257 (2016).

    Article  CAS  Google Scholar 

  4. Cho, J. Y., Tse, M. K., Holmes, D., Maleczka, R. E. & Smith, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C‒H bonds. Science 295, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C‒H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Hartwig, J. F. Borylation and silylation of C‒H bonds: a platform for diverse C‒H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C‒H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Catellani, M. Catalytic multistep reactions via palladacycles. Synlett 3, 298–313 (2003).

    Article  Google Scholar 

  10. Catellani, M. Novel methods of aromatic functionalization using palladium and norbornene as a unique catalytic system. Top. Organomet. Chem. 14, 21 (2005).

    Article  CAS  Google Scholar 

  11. Catellani, M., Motti, E. & Della Ca’, N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res. 41, 1512–1522 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Malacria, M. & Maestri, G. Palladium/norbornene catalytic system: chelation as a tool to control regioselectivity of Pd(iv) reductive elimination. J. Org. Chem. 78, 1323–1328 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Ye, J. T. & Lautens, M. Palladium-catalysed norbornene-mediated C‒H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Della Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/norbornene: a winning combination for selective aromatic functionalization via C‒H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. 36, 119–122 (1997).

    Article  CAS  Google Scholar 

  16. Catellani, M., Motti, E. & Minari, M.. Symmetrical and unsymmetrical 2,6-dialkyl-1,1′-biaryls by combined catalysis of aromatic alkylation via palladacycles and Suzuki-type coupling. Chem. Commun.157–158 (2000).

  17. Lautens, M. & Piguel, S. A new route to fused aromatic compounds by using a palladium-catalyzed alkylation-alkenylation sequence. Angew. Chem. Int. Ed. 39, 1045–1046 (2000).

    Article  CAS  Google Scholar 

  18. Deledda, S., Motti, E. & Catellani, M. Palladium-catalysed synthesis of nonsymmetrically disubstituted-1,1′-biphenyls from o-substituted aryl iodides through aryl coupling and delayed hydrogenolysis. Can. J. Chem. 83, 741–747 (2005).

    Article  CAS  Google Scholar 

  19. Wilhelm, T. & Lautens, M. Palladium-catalyzed alkylation-hydride reduction sequence: synthesis of meta-substituted arenes. Org. Lett. 7, 4053–4056 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Mitsudo, K., Thansandote, P., Wilhelm, T., Mariampillai, B. & Lautens, M. Selectively substituted thiophenes and indoles by a tandem palladium-catalyzed multicomponent reaction. Org. Lett. 8, 3939–3942 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Martins, A. & Lautens, M. Aromatic ortho-benzylation reveals an unexpected reductant. Org. Lett. 10, 5095–5097 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Martins, A., Candito, D. A. & Lautens, M. Palladium-catalyzed reductive ortho-arylation: evidence for the decomposition of 1,2-dimethoxyethane and subsequent arylpalladium(ii) reduction. Org. Lett. 12, 5186–5188 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Rudolph, A., Rackelmann, N., Turcotte-Savard, M. O. & Lautens, M. Application of secondary alkyl halides to a domino aryl alkylation reaction for the synthesis of aromatic heterocycles. J. Org. Chem. 74, 289–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Majhi, B. & Ranu, B. C. Palladium-catalyzed norbornene-mediated tandem ortho-C‒H-amination/ipso-C–I-cyanation of iodoarenes: regiospecific synthesis of 2-aminobenzonitrile. Org. Lett. 18, 4162–4165 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Maestri, G. et al. Of the ortho effect in palladium/norbornene-catalyzed reactions: a theoretical investigation. J. Am. Chem. Soc. 133, 8574–8585 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Lei, C. H., Jin, X. J. & Zhou, J. R. Palladium-catalyzed heteroarylation and concomitant ortho-alkylation of aryl iodides. Angew. Chem. Int. Ed. 54, 13397–13400 (2015).

    Article  CAS  Google Scholar 

  27. Mariampillai, B., Alliot, J., Li, M. & Lautens, M. A convergent synthesis of polysubstituted aromatic nitriles via palladium-catalyzed C‒H functionalization. J. Am. Chem. Soc. 129, 15372–15379 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Dong, Z. & Dong, G. Ortho vs ipso: site-selective Pd and norbornene-catalyzed arene C‒H amination using aryl halides. J. Am. Chem. Soc. 135, 18350–18353 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Z.-Y., Ye, C.-Q., Zhu, H., Zeng, X.-P. & Yuan, J.-J. Palladium/norbornene-mediated tandem C‒H amination/C–I alkenylation reaction of aryl iodides with secondary cyclic O-benzoyl hydroxylamines and activated terminal olefins. Chem. Eur. J. 20, 4237–4241 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Ye, C.-Q., Zhu, H. & Chen, Z.-Y. Synthesis of biaryl tertiary amines through Pd/norbornene joint catalysis in a remote C‒H amination/Suzuki coupling reaction. J. Org. Chem. 79, 8900–8905 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, P.-X. et al. Palladium-catalyzed/norbornene-mediated ortho-amination/N-tosylhydrazone insertion reaction: an approach to the synthesis of ortho-aminated vinylarenes. J. Org. Chem. 79, 6627–6633 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, P.-X. et al. Palladium-catalyzed/norbornene-mediated C‒H activation/N-tosylhydrazone insertion reaction: a route to highly functionalized vinylarenes. Chem. Eur. J. 20, 6745–6751 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Dong, Z., Wang, J., Ren, Z. & Dong, G. Ortho C‒H acylation of aryl iodides by palladium/norbornene catalysis. Angew. Chem. Int. Ed. 54, 12664–12668 (2015).

    Article  CAS  Google Scholar 

  34. Pan, S. et al. Palladium-catalyzed one-pot consecutive amination and sonogashira coupling for selective synthesis of 2-alkynylanilines. Adv. Synth. Catal. 357, 3052–3056 (2015).

    Article  CAS  Google Scholar 

  35. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R. Y. & Yu, J.-Q. Ligand-enabled meta-C‒H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei, C. H., Jin, X. J. & Zhou, J. R. Palladium-catalyzed alkynylation and concomitant ortho alkylation of aryl iodides. ACS Catal. 6, 1635–1639 (2016).

    Article  CAS  Google Scholar 

  37. Luo, B., Gao, J. M. & Lautens, M. Palladium-catalyzed norbornene-mediated tandem amination/cyanation reaction: a method for the synthesis of ortho-aminated benzonitriles. Org. Lett. 18, 4166–4169 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, J., Zhang, L., Dong, Z. & Dong, G. Reagent-enabled ortho-alkoxycarbonylation of aryl iodides via palladium/norbornene catalysis. Chem 1, 581–591 (2016).

    Article  CAS  Google Scholar 

  39. Wang, X.-C. et al. Ligand-enabled meta-C‒H activation using a transient mediator. Nature 519, 334–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong, Z., Wang, J. & Dong, G. Simple amine-directed meta-selective C‒H arylation via Pd/norbornene catalysis. J. Am. Chem. Soc. 137, 5887–5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Catellani, M. & Fagnola, M. C. Palladacycles as intermediates for selective dialkylation of arenes and subsequent fragmentation. Angew. Chem. Int. Ed. 33, 2421–2422 (1994).

    Article  Google Scholar 

  42. Catellani, M. et al. Palladium-arene interactions in catalytic intermediates: an experimental and theoretical investigation of the soft rearrangement between η1 and η2 coordination modes. J. Am. Chem. Soc. 124, 4336–4346 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Chai, D. I., Thansandote, P. & Lautens, M. Mechanistic studies of Pd-catalyzed regioselective aryl C‒H bond functionalization with strained alkenes: origin of regioselectivity. Chem. Eur. J. 17, 8175–8188 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Shi, H., Babinski, D. J. & Ritter, T. Modular C‒H functionalization cascade of aryl iodides. J. Am. Chem. Soc. 137, 3775–3778 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Sun, F. & Gu, Z. Decarboxylative alkynyl termination of palladium-catalyzed Catellani reaction: a facile synthesis of α-alkynyl anilines via ortho C‒H amination and alkynylation. Org. Lett. 17, 2222–2225 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, Y. Z., Zhu, R., Zhao, K. & Gu, Z. H. Palladium-catalyzed Catellani ortho-acylation reaction: an efficient and regiospecific synthesis of diaryl ketones. Angew. Chem. Int. Ed. 54, 12669–12672 (2015).

    Article  CAS  Google Scholar 

  47. Zhou, P.-X. et al. Palladium-catalyzed acylation/alkenylation of aryl iodide: a domino approach based on the Catellani–Lautens reaction. ACS Catal. 5, 4927–4931 (2015).

    Article  CAS  Google Scholar 

  48. Faccini, F., Motti, E. & Catellani, M. A new reaction sequence involving palladium-catalyzed unsymmetrical aryl coupling. J. Am. Chem. Soc. 126, 78–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Tedeschi, E., Dukler, S., Pfeffer, P. & Lavie, D. Studies on strychnine derivatives and conversion into brucine. Tetrahedron 24, 4573–4580 (1968).

    Article  CAS  PubMed  Google Scholar 

  50. Moldvai, I. et al. Synthesis of vinca alkaloids and related compounds. Part 84. Sulfonamide derivatives of some vinca alkaloids with cardiovascular activity. Arch. Pharm. 330, 190–198 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Chicago for research support. G. Lu is thanked for discussions of the DFT results, and K.-y. Yoon is thanked for checking the experiments and X-ray crystallography.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and G.D. conceived and designed the experiments. J.W. performed experiments. R.L. and Z.D. helped perform the experiments during the revision. J.W. and P.L. performed calculations. J.W. and G.D. co-wrote the manuscript.

Corresponding author

Correspondence to Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary experimental details, supplementary data and supplementary figures

Crystallographic data

CIF for compound 4k; CCDC reference: 1566682

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, R., Dong, Z. et al. Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nature Chem 10, 866–872 (2018). https://doi.org/10.1038/s41557-018-0074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0074-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing