Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvents can control solute molecular identity

Abstract

For solution-phase chemical reactions, the solvent is often considered simply as a medium to allow the reactants to encounter each other by diffusion. Although examples of direct solvent effects on molecular solutes exist, such as the compression of solute bonding electrons due to Pauli repulsion interactions, the solvent is not usually considered a part of the chemical species of interest. We show, using quantum simulations of Na2, that when there are local specific interactions between a solute and solvent that are energetically on the same order as a hydrogen bond, the solvent controls not only the bond dynamics but also the chemical identity of the solute. In tetrahydrofuran, dative bonding interactions between the solvent and Na atoms lead to unique coordination states that must cross a free energy barrier of ~8 kBT—undergoing a chemical reaction—to interconvert. Each coordination state has its own dynamics and spectroscopic signatures, highlighting the importance of considering the solvent in the identity of condensed-phase chemical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative simulation snapshots of Na2 reveal deformation of the bonding electronic density in the condensed phase.
Fig. 2: Pair distribution function g(r), showing chelation of the Na+ cores in Na2 by THF, leading to the formation of metal–oxygen dative bonds.
Fig. 3: The stable coordination states of Na2 in liquid THF behave as distinct molecules.
Fig. 4: Different potentials of mean force for the Na2 molecule with different local solvent coordination in liquid THF.
Fig. 5: Different Na2 coordination states are spectroscopically distinct.

Similar content being viewed by others

References

  1. Young, R. M. & Neumark, D. M. Dynamics of solvated electrons in clusters. Chem. Rev. 112, 5553–5577 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer to solvent spectra. Chem. Rev. 70, 59–93 (1970).

    Article  CAS  Google Scholar 

  3. Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. 1. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  4. Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Acta Biochim. Biophys. 811, 265–322 (1985).

    Article  CAS  Google Scholar 

  5. Barthel, E. R., Martini, I. B. & Schwartz, B. J. How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction. J. Phys. Chem. B. 105, 12230–12241 (2001).

    Article  CAS  Google Scholar 

  6. Suppan, P. Solvatochromic shifts: the influence of the medium on the energy of electronic states. J. Photochem. Photobiol. 50, 293–330 (1990).

    Article  CAS  Google Scholar 

  7. Bagchi, B. Isomerization dynamics in solution. Int. Rev. Phys. Chem. 6, 1–33 (1987).

    Article  CAS  Google Scholar 

  8. Glover, W. J., Larsen, R. E. & Schwartz, B. J. How does a solvent affect chemical bonds? Mixed quantum/classical simulations with a full CI treatment of the bonding electrons. J. Phys. Chem. Lett. 1, 165–169 (2010).

    Article  CAS  Google Scholar 

  9. Glover, W. J., Larsen, R. E. & Schwartz, B. J. First principles multi-electron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem. J. Chem. Phys. 132, 144101 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Glover, W. J., Larsen, R. E. & Schwartz, B. J. The roles of electronic exchange and correlation in charge-transfer-to-solvent dynamics: many-electron non-adiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. J. Chem. Phys. 129, 1–20 (2008).

    Article  CAS  Google Scholar 

  11. Smallwood, C. J., Mejia, C. N., Glover, W. R., Larsen, R. E. & Schwartz, B. J. A computationally-efficient exact pseudopotential method. 2. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF). J. Chem. Phys. 125, 9681–9691 (2006).

    Google Scholar 

  12. Glover, W. J., Larsen, R. E. & Schwartz, B. J. First principles multi-electron mixed quantum/classical simulations in the condensed phase. II. The charge-transfer-to-solvent states of sodium anions in liquid tetrahydrofuran. J. Chem. Phys. 132, 144102 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Glover, W. J., Larsen, R. E. & Schwartz, B. J. The nature of sodium atoms/(Na+–e) contact pairs in liquid tetrahydrofuran. J. Phys. Chem. B 114, 11535–11543 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gervais, B. et al. Simple DFT model of clusters embedded in rare gas matrix: trapping sites and spectroscopic properties of Na embedded in Ar. J. Chem. Phys. 121, 8466–8480 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Szaz, L. Pseudopotential Theory of Atoms and Molecules. (Wiley: New York, 1985).

    Google Scholar 

  16. Liu, Z., Carter, L. E. & Carter, E. A. Full configuration interaction molecular dynamics of Na2 and Na3. J. Phys. Chem. 99, 4355–4359 (1995).

    Article  CAS  Google Scholar 

  17. Lennard-Jones, J. E. The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668–686 (1929).

    Article  CAS  Google Scholar 

  18. Coulson, C. A. Representation of simple molecules by molecular orbitals. Q. Rev. Chem. Soc. 1, 144–178 (1947).

    Article  CAS  Google Scholar 

  19. Glover, W. J., Larsen, R. E. & Schwartz, B. J. Simulating the formation of sodium:electron tight-contact pairs: watching the solvation of atoms in liquids one molecule at a time. J. Phys. Chem. A 115, 5887–5894 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Bragg, A. E., Glover, W. J. & Schwartz, B. J. Watching the solvation of atoms in liquids one solvent molecule at a time. Phys. Rev. Lett. 104, 233005 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Cavanagh, M. C., Larsen, R. E. & Schwartz, B. J. Watching Na atoms solvate into Na+–e contact pairs: untangling the ultrafast charge-transfer-to-solvent dynamics of Na in tetrahydrofuran (THF). J. Phys. Chem. 111, 5144–5157 (2007).

    Article  CAS  Google Scholar 

  22. Chandrasekhar, J. & Jorgensen, W. L. The nature of dilute-solutions of sodium-ion in water, methanol, and tetrahydrofuran. J. Chem. Phys. 77, 5080–5089 (1982).

    Article  CAS  Google Scholar 

  23. Mardirossian, N. & Head-Gordon, M. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110–214200 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Bedard-Hearn, M. J., Larsen, R. E. & Schwartz, B. J. Understanding nonequilibrium solvent motions through molecular projections: computer simulations of solvation dynamics in liquid tetrahydrofuran (THF). J. Phys. Chem. B 107, 14464–14475 (2003).

    Article  CAS  Google Scholar 

  25. Kornath, A., Zoermer, A. & Ludwig, R. Formation of the magic cluster Na8 in noble gas matrixes. Inorg. Chem. 41, 6206–6210 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kornath, A., Ludwig, R. & Zoermer, A. Small potassium clusters. Angew. Chem. Int. Ed. 37, 1575–1577 (1998).

    Article  CAS  Google Scholar 

  27. Ozin, G. A. & Huber, H. The matrix optical spectra of sodium molecules containing from two to four atoms. Inorg. Chem. 18, 1402–1406 (1979).

    Article  CAS  Google Scholar 

  28. Welker, T. & Martin, T. P. Optical-absorption of matrix isolated Li, Na, and Ag clusters and microcrystals. J. Chem. Phys. 70, 5683–5691 (1979).

    Article  CAS  Google Scholar 

  29. Hofmann, M., Leutwyler, S. & Schulze, W. Matrix isolation-aggregation of sodium atoms and molecules formed in a supersonic nozzle bean. Chem. Phys. 40, 145–152 (1979).

    Article  CAS  Google Scholar 

  30. Froben, F. W. & Schulze, W. Raman measurements of matrix-isolated small metal-clusters. Phys. Chem. Chem. Phys. 88, 312–314 (1984).

    CAS  Google Scholar 

  31. Kornath, A., Zoermer, A. & Ludwig, R. Raman spectroscopy investigation of matrix-isolated rubidium and cesium molecules: Rb2, Rb3, Cs2, and Cs3. Inorg. Chem. 38, 4696–4699 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Scott, D. R. & Allison, J. B. Solvent glasses for low temperature spectroscopic studies. J. Phys. Chem. 66, 561–562 (1962).

    Article  CAS  Google Scholar 

  33. Kato, H., Matsui, T. & Noda, C. Na2 (A 1+ uX 1+ g) fluorescence accompanied by a continuous spectrum. J. Chem. Phys. 76, 5678–5683 (1982).

    Article  CAS  Google Scholar 

  34. Verma, K. K., Bahns, J. T., Rajeiriza, A. R., Stwalley, W. C. & Zemke, W. T. First observation of bound-continuum transitions in the laser-induced A 1+ uX 1+ g fluorescence of Na2. J. Chem. Phys. 78, 3599–3613 (1983).

    Article  CAS  Google Scholar 

  35. Barrow, R. F., Verges, J., Effantin, C., Hussein, K. & D’incan, J. Long-range potentials for the X 1+ g and (1)1g states and the dissociation energy of Na2. Chem. Phys. Lett. 104, 179–183 (1984).

    Article  CAS  Google Scholar 

  36. Babaky, O. & Hussein, K. The ground state X 1+ g of Na2. Can. J. Phys. 67, 912–918 (1989).

    Article  CAS  Google Scholar 

  37. Phillips, J. C. & Kleinman, L. New method for calculating wave functions in crystals and molecules. Phys. Rev. 116, 287–294 (1959).

    Article  CAS  Google Scholar 

  38. Smallwood, C. J., Larsen, R. E., Glover, W. G. & Schwartz, B. J. A computationally-efficient exact pseudopotential method. I. Analytic reformulation of the Philips–Kleinman theory. J. Chem. Phys. 125, 074102 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Larsen, R. E., Glover, W. J. & Schwartz, B. J. Does the hydrated electron occupy a cavity? Science 329, 65–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, London, 1992).

    Google Scholar 

  41. Steinhauser, O. Reaction field simulation of water. Mol. Phys. 45, 335–348 (1982).

    Article  CAS  Google Scholar 

  42. Smit, B. Phase-diagrams of Lennard-Jones fluids. J. Chem. Phys. 96, 8639–4860 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Early portions of this work were supported by the National Science Foundation (grant CHE-1565434). Beginning in September 2017, this work was supported by the US Department of Energy Condensed Phase and Interfacial Molecular Science programme (grant 0000228903). The authors acknowledge the Institute for Digital Research and Education (IDRE) at UCLA for use of the hoffman2 computing cluster, B. Taggart for assistance setting up the simulations, and W. Glover and C.-C. Zhou for discussions.

Author information

Authors and Affiliations

Authors

Contributions

The work described in this text was completed by D.R.W. under the supervision of B.J.S.

Corresponding authors

Correspondence to Devon. R. Widmer or Benjamin J. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widmer, D.R., Schwartz, B.J. Solvents can control solute molecular identity. Nature Chem 10, 910–916 (2018). https://doi.org/10.1038/s41557-018-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0066-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing