Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions


NaCl in a 1:1 stoichiometry is the only known stable form of the Na–Cl crystal under ambient conditions, and non-1:1 Na–Cl species can only form under extreme conditions, such as high pressures. Here we report the direct observation, under ambient conditions, of Na2Cl and Na3Cl as two-dimensional (2D) Na–Cl crystals, together with regular NaCl, on reduced graphene oxide membranes and on the surfaces of natural graphite powders from salt solutions far below the saturated concentration. Molecular dynamics and density functional theory calculations suggest that this unconventional crystallization process originates from the cation–π interaction between the ions and the π-conjugated system in the graphitic surface, which promotes the ion–surface adsorption. The strong Na+π interaction and charge transfer lead to stoichiometries with an excess of Na+. With unique electron and spin distributions and bonding, the resulting 2D crystals may have unusual electronic, magnetic, optical and mechanical properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 2D Na–Cl crystals from salt solutions far below the saturated concentration.
Fig. 2: XRD patterns of rGO membranes immersed in solutions at different concentrations.
Fig. 3: Na+ and Cl adsorbed on a graphene sheet and between two graphene sheets.
Fig. 4: XRD pattern of K–Cl crystals obtained from rGO membranes immersed in unsaturated (3.0 M) KCl solution together with four control systems.


  1. 1.

    Yuyama, K.-I., George, J., Thomas, K. G., Sugiyama, T. & Masuhara, H. Two-dimensional growth rate control of l-phenylalanine crystal by laser trapping in unsaturated aqueous solution. Cryst. Growth Des. 16, 953–960 (2016).

    Article  CAS  Google Scholar 

  2. 2.

    Yuyama, K., Rungsimanon, T., Sugiyama, T. & Masuhara, H. Selective fabrication of α- and γ-polymorphs of glycine by intense polarized continuous wave laser beams. Cryst. Growth Des. 12, 2427–2434 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    Niinomi, H. et al. Plasmonic heating-assisted laser-induced crystallization from a NaClO3 unsaturated mother solution. Cryst. Growth Des. 17, 809–818 (2017).

    Article  CAS  Google Scholar 

  4. 4.

    Murdaugh, A. E., Liddelow, M., Schmidt, A. M. & Manne, S. Two-dimensional crystal growth from undersaturated solutions. Langmuir. 23, 5852–5856 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Bykov, M. et al. High-pressure phase transformations in TiPO4: a route to pentacoordinated phosphorus. Angew. Chem. Int. Ed. 55, 15053–15057 (2016).

    Article  CAS  Google Scholar 

  9. 9.

    Zimmermann, N. E. R., Vorselaars, B., Quigley, D. & Peters, B. Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 13352–13361 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Wang, Y. & Ma, Y. Perspective: crystal structure prediction at high pressures. J. Chem. Phys. 140, 040901 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Lanaro, G. & Patey, G. Birth of NaCl crystals: insights from molecular simulations. J. Phys. Chem. B 120, 9076–9087 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Tassel, C. et al. High-pressure synthesis of manganese oxyhydride with partial anion order. Angew. Chem. Int. Ed. 55, 9667–9670 (2016).

    Article  CAS  Google Scholar 

  13. 13.

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat. Phys. 7, 43–47 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    Profeta, G., Calandra, M. & Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 8, 131–134 (2012).

    Article  CAS  Google Scholar 

  16. 16.

    Kim, H. W. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 351, 68–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Liang, L., Xu, Y., Lei, Y. & Liu, H. 1-dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties. Nanoscale 6, 3536–3539 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Moon, I. K., Lee, J., Ruoff, R. S. & Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Swanson, H. E. et al. Standard X-ray Diffraction Powder Patterns Vol. 2, Circular 539 (National Bureau of Standards, Washington, 1953).

  22. 22.

    Lee, D. K. et al. Water-soluble epitaxial NaCl thin film for fabrication of flexible devices. Sci. Rep. 7, 8716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ma, J. C. & Dougherty, D. A. The cation–π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Xiu, X., Puskar, N. L., Shanata, J. A. P., Lester, H. A. & Dougherty, D. A. Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 458, 534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shi, G. et al. Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation–π interactions. Sci. Rep. 3, 3436 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mahadevi, A. S. & Sastry, G. N. Cation–π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Shi, G. et al. Molecular-scale hydrophilicity induced by solute: molecular-thick charged pancakes of aqueous salt solution on hydrophobic carbon-based surfaces. Sci. Rep. 4, 6793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Liu, J., Shi, G., Guo, P., Yang, J. & Fang, H. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115, 164502 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Shi, G. et al. Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations. Phys. Rev. Lett. 117, 238102 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Gebbie, M. A. et al. Tuning underwater adhesion with cation–π interactions. Nat. Chem. 9, 473–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Patra, N., Wang, B. & Král, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank P. Ball, Y. Tu, R. Wan and Y. Gao for their constructive suggestions. Support from the National Science Fund for Outstanding Young Scholars (no. 11722548), the National Natural Science Foundation of China (no. 11574339, 41430644, 11404361 and 21671131), the Scientific Research and Developed Fund of Zhejiang A & F University (no. 2017FR032), the Key Research Program of the Chinese Academy of Sciences (no. KJZD-EW-M03), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (no. QYZDJ-SSW-SLH053), the Deepcomp7000 and ScGrid of the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences, the Special Program for Applied Research on SuperComputation of the NSFC-Guangdong Joint Fund (the second phase) and the Supercomputer Center of CAS is acknowledged.

Author information




H.-P.F. had the idea to observe Na–Cl crystals in the rGO membranes in salt solutions of concentrations below the saturated concentration based on the ion–π interactions. H.-P.F., M.-H.W., G.-S.S. and L.Y. conceived and designed the experiments and simulations. L.C., G.-S.S., D.-Y.L. and Z.Q. performed the experiments. G.-S.S. and Y.-Z.Y. performed the simulations. G.-S.S., L.C., H.-P.F., S.-S.L. and L.-H.L. analysed the data, G.-S.S., L.C., H.-P.F. and M.-H.W. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Minghong Wu or Haiping Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Chen, L., Yang, Y. et al. Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nature Chem 10, 776–779 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing