Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex

Abstract

The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna–Matthews–Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore–environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and absorption of the FMO complex
Fig. 2: Polarization-controlled 2DES of the FMO complex
Fig. 3: Selected QBs in FMO.
Fig. 4: Oscillation maps.

Similar content being viewed by others

References

  1. Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Fenna, R. E. & Matthews, B. W. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258, 573–577 (1975).

    Article  CAS  Google Scholar 

  4. Hauska, G., Schoedl, T., Remigy, H. & Tsiotis, G. The reaction center of green sulfur bacteria. Biochim. Biophys. Acta Bioenerg. 1507, 260–277 (2001).

    Article  CAS  Google Scholar 

  5. Dostál, J., Pšenčík, J. & Zigmantas, D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8, 705–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Tronrud, D. E., Wen, J., Gay, L. & Blankenship, R. E. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 100, 79–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Shem, A., Frolow, F. & Nelson, N. Evolution of photosystem I—from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 564, 274–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Vulto, S. I. E. et al. Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K. J. Phys. Chem. B 102, 9577–9582 (1998).

    Article  CAS  Google Scholar 

  9. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Cho, M., Vaswani, H. M., Brixner, T., Stenger, J. & Fleming, G. R. Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109, 10542–10556 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Adolphs, J. & Renger, T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys. J. 91, 2778–2797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Savikhin, S. & Struve, W. S. Ultrafast energy transfer in FMO trimers from the green bacterium Chlorobium tepidum. Biokhimiya 33, 11200–11208 (1994).

    CAS  Google Scholar 

  13. Savikhin, S., Buck, D. R. & Struve, W. S. Toward level-to-level energy transfers in photosynthesis: the Fenna–Matthews–Olson protein. J. Phys. Chem. B 102, 5556–5565 (1998).

    Article  CAS  Google Scholar 

  14. Hybl, J. D., Albrecht, A. W., Gallagher Faeder, S. M. & Jonas, D. M. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297, 307–313 (1998).

    Article  CAS  Google Scholar 

  15. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Thyrhaug, E., Žídek, K., Dostál, J., Bína, D. & Zigmantas, D. Exciton structure and energy transfer in the Fenna–Matthews–Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016).

  17. Vulto, S. I. E. et al. Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: a kinetic model. J. Phys. Chem. B 103, 8153–8161 (1999).

    Article  CAS  Google Scholar 

  18. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107, 12766–12770 (2010).

  20. Savikhin, S., Buck, D. R. & Struve, W. S. Oscillating anisotropies in a bacteriochlorophyll protein: evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).

    Article  CAS  Google Scholar 

  21. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  Google Scholar 

  22. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Harel, E. & Engel, G. S. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. USA 109, 706–711 (2012).

  24. Wendling, M. et al. Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J. Phys. Chem. B 104, 5825–5831 (2000).

    Article  CAS  Google Scholar 

  25. Lee, H., Cheng, Y.-C. & Fleming, G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Olbrich, C., Strumpfer, J., Schulten, K. & Kleinekathofer, U. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J. Phys. Chem. B 115, 758–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Shim, S., Rebentrost, P., Valleau, S. & Aspuru-Guzik, A. Atomistic study of the long-lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys. J. 102, 649–660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maiuri, M., Ostroumov, E. E., Saer, R. G., Blankenship, R. E. & Scholes, G. D. Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10, 177–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Rätsep, M. & Freiberg, A. Electronphonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127, 251–259 (2007).

    Article  CAS  Google Scholar 

  30. Rätsep, M., Cai, Z.-l, Reimers, J. R. & Freiberg, A. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J. Chem. Phys. 134, 024506 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Ceccarelli, M., Lutz, M. & Marchi, M. A density functional normal mode calculation of a bacteriochlorophyll a derivative. J. Am. Chem. Soc. 122, 3532–3533 (2000).

    Article  CAS  Google Scholar 

  32. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mančal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. USA 110, 1203–1208 (2013).

  34. Tempelaar, R., Jansen, T. L. C. & Knoester, J. Vibrational beatings conceal evidence of electronic coherence in the FMO light-harvesting complex. J. Phys. Chem. B 118, 12865–12872 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Augulis, R. & Zigmantas, D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hochstrasser, R. M. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).

    Article  CAS  Google Scholar 

  39. Zanni, M. T., Ge, N.-H., Kim, Y. S. & Hochstrasser, R. M. Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).

  40. Westenhoff, S., Palecek, D., Edlund, P., Smith, P. & Zigmantas, D. Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Paleček, D., Edlund, P., Westenhoff, S. & Zigmantas, D. Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci. Adv. 3, e1603141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duan, H.-G. et al. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci. USA 114, 8493–8498 (2017).

  43. Li, H., Bristow, A. D., Siemens, M. E., Moody, G. & Cundiff, S. T. Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4, 1390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seibt, J., Hansen, T. & Pullerits, T. 3D spectroscopy of vibrational coherences in quantum dots: theory. J. Phys. Chem. B 117, 11124–11133 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Butkus, V. et al. Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring. J. Phys. Chem. Lett. 8, 2344–2349 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Thyrhaug, E. et al. Ultrafast coherence transfer in DNA-templated silver nanoclusters. Nat. Commun. 8, 15577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fransted, K., Caram, J. R., Hayes, D. & Engel, G. S. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: elucidating the coherence dynamics of the Fenna–Matthews–Olson complex using its chromophore as a control. J. Chem. Phys. 137, 125101 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Mukamel, S Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  49. Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    Article  CAS  Google Scholar 

  50. Orlandi, G. & Siebrand, W. Theory of vibronic intensity borrowing. Comparison of Herzberg–Teller and Born–Oppenheimer coupling. J. Chem. Phys. 58, 4513–4523 (1973).

    Article  CAS  Google Scholar 

  51. Dostál, J., Mančal, T., Vácha, F., Pšenčík, J. & Zigmantas, D. Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140, 115103 (2014).

  52. Kano, H., Saito, T. & Kobayashi, T. Observation of Herzberg–Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy. J. Phys. Chem. A 106, 3445–3453 (2002).

    Article  CAS  Google Scholar 

  53. Dostál, J., Mančal, T., Vácha, F., Pšenčík, J. & Zigmantas, D. Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140, 115103 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Wen, J., Zhang, H., Gross, M. L. & Blankenship, R. E. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc. Natl Acad. Sci. USA 106, 6134–6139 (2009).

    Article  PubMed  Google Scholar 

  55. Wahlund, T. M., Woese, C. R., Castenholz, R. W. & Madigan, M. T. A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch. Microbiol. 156, 81–90 (1991).

    Article  CAS  Google Scholar 

  56. Holstein, T. Studies of polaron motion. Ann. Phys. 8, 325–342 (1959).

    Article  CAS  Google Scholar 

  57. Olbrich, C. et al. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. J. Phys. Chem. B 115, 8609–8621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jansen, T. L. C. & Knoester, J. Nonadiabatic effects in the two-dimensional infrared spectra of peptides: application to alanine dipeptide. J. Phys. Chem. B 110, 22910–22916 (2006).

  59. Torii, H. Effects of intermolecular vibrational coupling and liquid dynamics on the polarized Raman and two-dimensional infrared spectral profiles of liquid N,N-dimethylformamide analyzed with a time-domain computational method. J. Phys. Chem. A 110, 4822–4832 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in Lund was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Crafoord Foundation. R.T. acknowledges The Netherlands Organisation for Scientific Research (NWO) for support through a Rubicon grant. D.B. acknowledges funding from Czech Science Foundation under grant no. P501/12/G055 and institutional support RVO:60077344. We thank D. Paleček for making available his code for complex QB analysis.

Author information

Authors and Affiliations

Authors

Contributions

D.Z. conceived the idea, E.T., M.J.P.A., K.Z. and D.Z. designed and performed experiments, R.T., J.K. and T.L.C.J. designed the theory, R.T. performed simulations and D.B. extracted and purified the sample. E.T., M.J.P.A. and R.T. analysed the data. E.T., R.T. and D.Z. wrote the manuscript with input from all the other authors.

Corresponding author

Correspondence to Donatas Zigmantas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Data and Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyrhaug, E., Tempelaar, R., Alcocer, M.J.P. et al. Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex. Nature Chem 10, 780–786 (2018). https://doi.org/10.1038/s41557-018-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0060-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing