Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles

Abstract

Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron–hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO2 reduction to other challenging multi-electron, multi-proton transformations such as N2 fixation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electron transfer from plasmonically excited gold NPs.
Fig. 2: Dependence of the electron transfer rate on the photon flux.
Fig. 3: Effect of the hole scavenger on the propensity of multi-electron transfer.
Fig. 4: Effect of the excitation wavelength on the propensity of multi-electron transfer.

References

  1. 1.

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Liu, Z., Hou, W., Pavaskar, P., Aykol, M. & Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Yu, S., Wilson, A. J., Heo, J. & Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 18, 2189–2194 (2018).

  4. 4.

    Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene. Science 339, 1590–1593 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Hou, W. et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  13. 13.

    Watanabe, K., Menzel, D., Nilius, N. & Freund, H.-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Bigot, J., Halté, V., Merle, J. & Daunois, A. Electron dynamics in metallic nanoparticles. Chem. Phys. 25, 181–203 (2000).

    Article  Google Scholar 

  15. 15.

    Sheikholeslami, S., Jun, Y., Jain, P. K. & Alivisatos, A. P. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett. 10, 2655–2660 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Kim, K. H., Watanabe, K., Mulugeta, D., Freund, H.-J. & Menzel, D. Enhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses. Phys. Rev. Lett. 107, 047401 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Nosaka, Y., Ohta, N. & Miyama, H. Photochemical kinetics of ultrasmall semiconductor particles in solution: effect of size on the quantum yield of electron transfer. J. Phys. Chem. 94, 3752–3755 (1990).

    Article  CAS  Google Scholar 

  18. 18.

    Mulugeta, D., Kim, K. H., Watanabe, K., Menzel, D. & Freund, H.-J. Size effects in thermal and photochemistry of (NO)2 on Ag nanoparticles. Phys. Rev. Lett. 101, 146103 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Mulugeta, D., Watanabe, K., Menzel, D. & Freund, H.-J. State-resolved investigation of the photodesorption dynamics of NO from (NO)2 on Ag nanoparticles of various sizes in comparison with Ag(111). J. Chem. Phys. 134, 164702 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Link, S. & El-sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  21. 21.

    Liu, Z. et al. Understanding the growth mechanisms of Ag nanoparticles controlled by plasmon-induced charge transfers in Ag–TiO2 films. J. Phys. Chem. C 119, 9496–9505 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    Redmond, P. L., Wu, X. & Brus, L. Photovoltage and photocatalyzed growth in citrate-stabilized colloidal silver nanocrystals. J. Phys. Chem. C. 111, 8942–8947 (2007).

    Article  CAS  Google Scholar 

  23. 23.

    Wu, X., Thrall, E. S., Liu, H., Steigerwald, M. & Brus, L. Plasmon induced photovoltage and charge separation in citrate-stabilized gold nanoparticles. J. Phys. Chem. C 114, 12896–12899 (2010).

    Article  CAS  Google Scholar 

  24. 24.

    Jain, P. K., Qian, W. & El-Sayed, M. A. Ultrafast cooling of photoexcited electrons in gold nanoparticle−thiolated DNA conjugates involves the dissociation of the gold−thiol bond. J. Am. Chem. Soc. 128, 2426–2433 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Smith, J. G. & Jain, P. K. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J. Am. Chem. Soc. 138, 6765–6773 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Alsan, M. et al. Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes. J. Power Sources 266, 374–383 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302–9315 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article  Google Scholar 

  29. 29.

    Persson, B. N. J. Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162 (1993).

    Article  CAS  Google Scholar 

  30. 30.

    Bard, A. J., Jordan, J. & Parsons, R. Standard Potentials in Aqueous Solutions (Marcel Dekker, New York, 1985).

  31. 31.

    Kolthoff, I. M. & Tomsicek, W. J. The oxidation potential of the system potassium ferrocyanide–potassium ferricyanide at various ionic strengths. J. Phys. Chem. 39, 945–954 (1934).

    Article  Google Scholar 

  32. 32.

    Carregal-Romero, S., Pérez-Juste, J., Hervés, P., Liz-Marzán, L. M. & Mulvaney, P. Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis. Langmuir 26, 1271–1277 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Fleischmann, M., Graves, P. R. & Robinson, J. The Raman spectroscopy of the ferricyanide/ferrocyanide system at gold, β-palladium hydride and platinum electrodes. J. Electroanal. Soc. 182, 87–98 (1985).

    Article  CAS  Google Scholar 

  34. 34.

    Siahrostami, S., Li, G.-L., Viswanathan, V. & Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Nosaka, Y., Ohta, N. & Miyama, H. Photochemical kinetics of ultrasmall semiconductor particles in solution: effect of size on the quantum yield of electron transfer. J. Phys. Chem. 94, 3752–3755 (1990).

    Article  CAS  Google Scholar 

  37. 37.

    Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Dainton, F. S., Janovsky, I. V. & Salmon, G. A. Evidence for the production of an oxidising radical on pulse-radiolysis of methanol. J. Chem. Soc. D Chem. Comm. 0, 335–336 (1969).

    Article  CAS  Google Scholar 

  39. 39.

    Choi, J., Ryu, S. Y., Balcerski, W., Lee, T. K. & Hoffmann, M. R. Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J. Mater. Chem. 18, 2371–2378 (2008).

    Article  CAS  Google Scholar 

  40. 40.

    Papaconstantinou, E. Relative electron-donating ability of simple alcohol radicals toward 12-heteropoly tungstates. J. Chem. Soc. Faraday Trans. 78, 2769–2772 (1982).

    Article  CAS  Google Scholar 

  41. 41.

    Papaconstantinou, E. New easy method for obtaining approximate redox potential of radicals, produced by 60Co-γ-radiolysis, using heteropoly electrolytes of molybdenum and tungsten as electron acceptors. The redox potential of some alcohol and organic acid radicals. Anal. Chem. 47, 1592–1595 (1975).

    Article  CAS  Google Scholar 

  42. 42.

    Maeda, K., Ozaki, N. & Akimoto, I. Alcohol additive effect in hydrogen generation from water with carbon by photochemical reaction. Jpn. J. Appl. Phys. 53, 1–3 (2014).

    Article  CAS  Google Scholar 

  43. 43.

    Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994).

    Article  CAS  Google Scholar 

  44. 44.

    Mooradian, A. Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969).

    Article  CAS  Google Scholar 

  45. 45.

    Zoric, I., Zach, M., Kasemo, B. & Langhammer, C. Gold, platinum, and aluminum nanodisk plasmons: material damping mechanisms. ACS Nano 5, 2535–2546 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Sarina, S. et al. Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew. Chem. Int. Ed. Engl. 53, 2935–2940 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Zhao, J. et al. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 3, 482–488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bird, R. E., Hulstrom, R. L. & Lewis, L. J. Terrestrial solar spectral data sets. Sol. Energy 30, 563–573 (1983).

    Article  Google Scholar 

  49. 49.

    Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding through an Arnold and Mabel Beckman Foundation Young Investigator Award. J.G.S. was supported by a CAREER award to P.K.J. from the National Science Foundation (rant NSF CHE-1455011). The work was carried out in part at the Frederick Seitz Materials Research Laboratory at UIUC.

Author information

Affiliations

Authors

Contributions

P.K.J. conceived the project and designed the experiments. Y.K. conducted the experiments. P.K.J. performed the theoretical modelling. Y.K. and P.K.J analysed the data. J.G.S. performed the structural characterization. Y.K. and P.K.J. co-wrote the manuscript.

Corresponding author

Correspondence to Prashant K. Jain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1 and 2, Supplementary Methods and Analysis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Smith, J.G. & Jain, P.K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nature Chem 10, 763–769 (2018). https://doi.org/10.1038/s41557-018-0054-3

Download citation

Further reading