Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling Pd(iv) reductive elimination pathways enables Pd(ii)-catalysed enantioselective C(sp3)−H fluorination

Abstract

The development of a Pd(ii)-catalysed enantioselective fluorination of C(sp3)−H bonds would offer a new approach to making chiral organofluorines. However, such a strategy is particularly challenging because of the difficulty in differentiating prochiral C(sp3)−H bonds through Pd(ii)-insertion, as well as the sluggish reductive elimination involving Pd−F bonds. Here, we report the development of a Pd(ii)-catalysed enantioselective C(sp3)−H fluorination using a chiral transient directing group strategy. In this work, a bulky, amino amide transient directing group was developed to control the stereochemistry of the C−H insertion step and selectively promote the C(sp3)−F reductive elimination pathway from the Pd(iv)–F intermediate. Stereochemical analysis revealed that while the desired C(sp3)−F formation proceeds via an inner-sphere pathway with retention of configuration, the undesired C(sp3)−O formation occurs through an SN2-type mechanism. Elucidation of the dual mechanism allows us to rationalize the profound ligand effect on controlling reductive elimination selectivity from high-valent Pd species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enantioselective C(sp3)−H fluorination.
Fig. 2: Experimental evidence for the dual mechanism of Pd(iv) reductive elimination.
Fig. 3: Controlling reductive elimination pathways from putative Pd(iv) intermediates.
Fig. 4: Access to diverse chiral organofluorines.

Similar content being viewed by others

References

  1. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  PubMed  Google Scholar 

  2. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Fujiwara, T. & O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem. 167, 16–29 (2014).

    Article  CAS  Google Scholar 

  4. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hollingworth, C. & Gouverneur, V. Transition metal catalysis and nucleophilic fluorination. Chem. Commun. 48, 2929–2942 (2012).

    Article  CAS  Google Scholar 

  7. Sather, A. C. & Buchwald, S. L. The evolution of Pd0/PdII-catalyzed aromatic fluorination. Acc. Chem. Res. 49, 2146–2157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, X., Wu, T., Phipps, R. J. & Toste, F. D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 115, 826–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hintermann, L. & Togni, A. Catalytic enantioselective fluorination of β-ketoesters. Angew. Chem. Int. Ed. 39, 4359–4362 (2000).

    Article  CAS  Google Scholar 

  10. Marigo, M., Fielenbach, D., Braunton, A., Kjærsgaard, A. & Jørgensen, K. A. Enantioselective formation of stereogenic carbon–fluorine centers by a simple catalytic method. Angew. Chem. Int. Ed. 44, 3703–3706 (2005).

    Article  CAS  Google Scholar 

  11. Beeson, T. D. & MacMillan, D. W. C. Enantioselective organocatalytic α-fluorination of aldehydes. J. Am. Chem. Soc. 127, 8826–8828 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Rauniyar, V., Lackner, A. D., Hamilton, G. L. & Toste, F. D. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. Science 334, 1681–1684 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Talbot, E. P. A., Fernandes, T. d. A., McKenna, J. M. & Toste, F. D. Asymmetric palladium-catalyzed directed intermolecular fluoroarylation of styrenes. J. Am. Chem. Soc. 136, 4101–4104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cochrane, N. A., Nguyen, H. & Gagné, M. R. Catalytic enantioselective cyclization and C3-fluorination of polyenes. J. Am. Chem. Soc. 135, 628–631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalow, J. A. & Doyle, A. G. Enantioselective ring opening of epoxides by fluoride anion promoted by a cooperative dual-catalyst system. J. Am. Chem. Soc. 132, 3268–3269 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Katcher, M. H. & Doyle, A. G. Palladium-catalyzed asymmetric synthesis of allylic fluorides. J. Am. Chem. Soc. 132, 17402–17404 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Q., Stockdale, D. P., Mixdorf, J. C., Topczewski, J. J. & Nguyen, H. M. Iridium-catalyzed enantioselective fluorination of racemic, secondary allylic trichloroacetimidates. J. Am. Chem. Soc. 137, 11912–11915 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon−hydrogen bonds. J. Am. Chem. Soc. 128, 7134–7135 (2006).

    Article  CAS  Google Scholar 

  19. Braun, M.-G. & Doyle, A. G. Palladium-catalyzed allylic C–H fluorination. J. Am. Chem. Soc. 135, 12990–12993 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Q., Yin, X.-S., Chen, K., Zhang, S.-Q. & Shi, B.-F. Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(ii)-catalyzed fluorination of unactivated methylene C(sp 3)–H bonds: scope and mechanistic studies. J. Am. Chem. Soc. 137, 8219–8226 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, R.-Y. et al. Ligand-enabled stereoselective β-C(sp 3)–H fluorination: synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids. J. Am. Chem. Soc. 137, 7067–7070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rueda-Becerril, M. et al. Fluorine transfer to alkyl radicals. J. Am. Chem. Soc. 134, 4026–4029 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Bloom, S. et al. A polycomponent metal‐catalyzed aliphatic, allylic, and benzylic fluorination. Angew. Chem. Int. Ed. 51, 10580–10583 (2012).

    Article  CAS  Google Scholar 

  24. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Xia, J.-B., Zhu, C. & Chen, C. Visible light-promoted metal-free C–H activation: diarylketone-catalyzed selective benzylic mono- and difluorination. J. Am. Chem. Soc. 135, 17494–17500 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Chatalova-Sazepin, C., Hemelaere, R., Paquin, J.-F. & Sammis, G. M. Recent advances in radical fluorination. Synthesis 47, 2554–2569 (2015).

    Article  CAS  Google Scholar 

  27. Huang, X. et al. Late stage benzylic C–H fluorination with [18F]fluoride for PET imaging. J. Am. Chem. Soc. 136, 6842–6845 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp 3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    Article  CAS  Google Scholar 

  30. Yahav, A., Goldberg, I. & Vigalok, A. Synthesis of the elusive (R3P)2MF2 (M = Pd, Pt) complexes. J. Am. Chem. Soc. 125, 13634–13635 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Rosewall, C. F., Sibbald, P. A., Liskin, D. V. & Michael, F. E. Palladium-catalyzed carboamination of alkenes promoted by N-fluorobenzenesulfonimide via C−H activation of arenes. J. Am. Chem. Soc. 131, 9488–9489 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Pérez-Temprano, M. H., Racowski, J. M., Kampf, J. W. & Sanford, M. S. Competition between sp 3-C–N vs. sp 3-C–F reductive elimination from PdIV complexes. J. Am. Chem. Soc. 136, 4097–4100 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Camasso, N. M., Pérez-Temprano, M. H. & Sanford, M. S. C(sp 3)–O bond-forming reductive elimination from PdIV with diverse oxygen nucleophiles. J. Am. Chem. Soc. 136, 12771–12775 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Sibbald, P. A., Rosewall, C. F., Swartz, R. D. & Michael, F. E. Mechanism of N-fluorobenzenesulfonimide promoted diamination and carboamination reactions: divergent reactivity of a Pd(iv) species. J. Am. Chem. Soc. 131, 15945–15951 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X., Mei, T.-S. & Yu, J.-Q. Versatile Pd(OTf)2·2H2O-catalyzed ortho-fluorination using NMP as a promoter. J. Am. Chem. Soc. 131, 7520–7521 (2009).

    Article  CAS  Google Scholar 

  36. Chan, K. S. L., Wasa, M., Wang, X. & Yu, J.-Q. Palladium(ii)-catalyzed selective monofluorination of benzoic acids using a practical auxiliary: a weak-coordination approach. Angew. Chem. Int. Ed. 50, 9081–9084 (2011).

    Article  CAS  Google Scholar 

  37. He, G., Lu, G., Guo, Z., Liu, P. & Chen, G. Benzazetidine synthesis via palladium-catalysed intramolecular C−H amination. Nat. Chem. 8, 1131–1136 (2016).

    Article  CAS  Google Scholar 

  38. Katcher, M. H., Norrby, P.-O. & Doyle, A. G. Mechanistic investigations of palladium-catalyzed allylic fluorination. Organometallics 33, 2121–2133 (2014).

    Article  CAS  Google Scholar 

  39. Racowski, J. M. & Sanford, M. S. Carbon-heteroatom bond-forming reductive elimination from palladium(iv) complexes. Top. Organomet. Chem. 35, 61–84.

  40. Chen, K., Zhang, S.-Q., Jiang, H.-Z., Xu, J.-W. & Shi, B.-F. Practical synthesis of anti-β-hydroxy-α-amino acids by PdII-catalyzed sequential C(sp 3)–H functionalization. Chem. Eur. J. 21, 3264–3270 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Canty, A. J. et al. Computational study of C(sp 3)–O bond formation at a PdIV centre. Dalton Trans. 46, 3742–3748 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Geier, M. J., Dadkhah Aseman, M. & Gagné, M. R. Anion-dependent switch in C–X reductive elimination diastereoselectivity. Organometallics 33, 4353–4356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Furuya, T. et al. Mechanism of C−F reductive elimination from palladium(iv) fluorides. J. Am. Chem. Soc. 132, 3793–3807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Racowski, J. M., Gary, J. B. & Sanford, M. S. Carbon(sp 3)–fluorine bond-forming reductive elimination from palladium(iv) complexes. Angew. Chem. Int. Ed. 51, 3414–3417 (2012).

    Article  CAS  Google Scholar 

  45. Kaspi, A. W., Yahav-Levi, A., Goldberg, I. & Vigalok, A. Xenon difluoride induced aryl iodide reductive elimination: a simple access to difluoropalladium(ii) complexes. Inorg. Chem. 47, 5–7 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, S.-B., Becker, J. J. & Gagné, M. R. Steric crowding makes challenging Csp 3–F reductive eliminations feasible. Organometallics 30, 3926–3929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McMurtrey, K. B., Racowski, J. M. & Sanford, M. S. Pd-catalyzed C–H fluorination with nucleophilic fluoride. Org. Lett. 14, 4094–4097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hynes, J. B. & Campbell, J. P. Synthesis of 2-aminoquinazolines from ortho-fluorobenzaldehydes. J. Heterocycl. Chem. 34, 385–387 (1997).

    Article  CAS  Google Scholar 

  49. Niu, X. et al. An efficient one-pot synthesis of 1,2,4-triazoloquinoxalines. Tetrahedron 70, 4657–4660 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from The Scripps Research Institute, the National Institutes of Health (NIGMS, 2R01GM084019) and Shanghai RAAS Blood Products Co. H.P. thanks the Korea Foundation for Advanced Studies and Eli Lilly for graduate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.P. developed the enantioselective fluorination reaction. H.P. and K.H. expanded the substrate scope. P.V. conducted the computational studies. J.-Q.Y. conceived and supervised the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary experimental data, synthetic procedures and chemical compound characterization data

Crystallographic data

CIF for compound 5a; CCDC reference: 1556389

Crystallographic data

CIF for compound 6; CCDC reference: 1556390

Crystallographic data

CIF for compound 8; CCDC reference: 1577327

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Verma, P., Hong, K. et al. Controlling Pd(iv) reductive elimination pathways enables Pd(ii)-catalysed enantioselective C(sp3)−H fluorination. Nature Chem 10, 755–762 (2018). https://doi.org/10.1038/s41557-018-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0048-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing