Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ring-through-ring molecular shuttling in a saturated [3]rotaxane

Abstract

Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle—shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural limits to molecular shuttling.
Fig. 2: Synthesis of saturated [3]rotaxane molecular shuttles.
Fig. 3: Structures of rotaxanes determined by single-crystal X-ray diffraction.
Fig. 4: Characterization of rotaxanes by NMR spectroscopy.
Fig. 5: Measuring the physical parameters of ring-through-ring molecular shuttling.

Similar content being viewed by others

References

  1. Sauvage, J.-P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, Weinheim, 1999).

  2. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond (Wiley, Hoboken, 2017).

    Google Scholar 

  3. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  4. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Badjić, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 19, 1845–1849 (2004).

    Article  CAS  Google Scholar 

  7. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. A. ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat. Chem. 2, 406–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  11. Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Collier, C. P. et al. A [2]catenane-based solid-state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  13. Fahrenbach, A. C. et al. Organic switches for surfaces and devices. Adv. Mater. 25, 331–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Feringa, B. L. & Browne, W. R. (eds) Molecular Switches2nd edn (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  15. Cheng, C. et al. An artificial molecular pump. Nat. Nanotech. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  16. Stoddart, J. F. Putting mechanically interlocked molecules (MIMs) to work in tomorrow’s world. Angew. Chem. Int. Ed. 53, 11102–11104 (2014).

    Article  CAS  Google Scholar 

  17. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley InterScience, Wiley-VCH, Weinheim, 2008).

    Book  Google Scholar 

  18. Balzani, V. Nanoscience and nanotechnology: the bottom-up construction of molecular devices and machines. Pure Appl. Chem. 80, 1631–1650 (2008).

    Article  CAS  Google Scholar 

  19. Ashton, P. R., Belohradsdky, M., Philp, D., Spencer, N. & Stoddart, J. F. The self-assembly of [2]- and [3]-rotaxanes by slippage. J. Chem. Soc., Chem. Commun. 16, 1274–1277 (1993).

    Article  Google Scholar 

  20. Loeb, S. J. & Wisner, J. A. [3]Rotaxanes employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown ethers. Chem. Commun. 845–846 (2000).

  21. Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Neal, E. A. & Goldup, S. M. A kinetic self-sorting approach to heterocircuit [3]rotaxanes. Angew. Chem. Int. Ed. 55, 12488–12493 (2016).

    Article  CAS  Google Scholar 

  23. Barendt, T. A., Docker, A., Marques, I., Félix, V. & Beer, P. D. Selective nitrate recognition by a halogen-bonding four-station [3]rotaxane molecular shuttle. Angew. Chem. Int. Ed. 55, 11069–11076 (2016).

    Article  CAS  Google Scholar 

  24. Noujeim, N., Zhu, K., Vukotic, V. N. & Loeb, S. J. [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. Org. Lett. 14, 2484–2487 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, K., Vukotic, V. N. & Loeb, S. J. Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew. Chem. Int. Ed. 51, 2168–2172 (2012).

    Article  CAS  Google Scholar 

  26. Zhu, K., Vukotic, V. N., Noujeim, N. & Loeb, S. J. Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012).

    Article  CAS  Google Scholar 

  27. Kilbinger, A. F. M., Cantrill, S. J., Waltman, A. W., Day, M. W. & Grubbs, R. H. Magic ring rotaxanes by olefin metathesis. Angew. Chem. Int. Ed. 42, 3281–3285 (2003).

    Article  CAS  Google Scholar 

  28. Baggi, G. & Loeb, S. J. Dialling-up the rotational co-conformations of a [2]rotaxane ligand. Angew. Chem. Int. Ed. 55, 12533–12537 (2016).

    Article  CAS  Google Scholar 

  29. Vukotic, V. N., Zhu, K., Baggi, G. & Loeb, S. J. Optical distinction between ‘slow’ and ‘fast’ translational motion in degenerate molecular shuttles. Angew. Chem. Int. Ed. 56, 6136–6141 (2017).

    Article  CAS  Google Scholar 

  30. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  31. Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 90, 935–967 (1990).

    Article  CAS  Google Scholar 

  32. Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).

    Article  CAS  Google Scholar 

  33. Young, P. G., Hirose, K. & Tobe, Y. Axle length does not affect switching dynamics in degenerate molecular shuttles with rigid spacers. J. Am. Chem. Soc. 136, 7899–7906 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through a Discovery Grant, an Accelerator Supplement and a Canada Research Chair award to S.J.L. S.J.L also acknowledges support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust and the University of Windsor for the development and maintenance of the X-ray diffraction centre. The authors thank M. Revington and J. Auld for their technical assistance with NMR spectroscopy and electrospray mass spectrometry, respectively.

Author information

Authors and Affiliations

Authors

Contributions

S.J.L. supervised the project. K.Z. designed the experiments, performed all the synthetic experiments and all the NMR characterization. K.Z. collected the single-crystal X-ray diffraction data and G.B. solved the X-ray structures. S.J.L. and K.Z. wrote the manuscript with input from G.B.

Corresponding authors

Correspondence to Kelong Zhu or Stephen J. Loeb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis and characterization details and analysis, Supplementary Figures 1–5

Crystallographic data

CIF for [2]rotaxane compound with embedded structure factor. CCDC number 1576710

Crystallographic data

CIF for [2]rotaxane compound with embedded structure factor. CCDC number 1576711

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Baggi, G. & Loeb, S.J. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nature Chem 10, 625–630 (2018). https://doi.org/10.1038/s41557-018-0040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0040-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing