Article | Published:

Ring-through-ring molecular shuttling in a saturated [3]rotaxane

Nature Chemistryvolume 10pages625630 (2018) | Download Citation

Abstract

Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle—shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sauvage, J.-P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, Weinheim, 1999).

  2. 2.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond (Wiley, Hoboken, 2017).

  3. 3.

    Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

  4. 4.

    Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

  5. 5.

    Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

  6. 6.

    Badjić, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 19, 1845–1849 (2004).

  7. 7.

    Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

  8. 8.

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

  9. 9.

    Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. A. ‘Texas-sized’ molecular box that forms an anion-induced supramolecular necklace. Nat. Chem. 2, 406–409 (2010).

  10. 10.

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nat. Nanotech. 10, 70–75 (2015).

  11. 11.

    Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

  12. 12.

    Collier, C. P. et al. A [2]catenane-based solid-state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

  13. 13.

    Fahrenbach, A. C. et al. Organic switches for surfaces and devices. Adv. Mater. 25, 331–348 (2013).

  14. 14.

    Feringa, B. L. & Browne, W. R. (eds) Molecular Switches2nd edn (Wiley-VCH, Weinheim, 2011).

  15. 15.

    Cheng, C. et al. An artificial molecular pump. Nat. Nanotech. 10, 547–553 (2015).

  16. 16.

    Stoddart, J. F. Putting mechanically interlocked molecules (MIMs) to work in tomorrow’s world. Angew. Chem. Int. Ed. 53, 11102–11104 (2014).

  17. 17.

    Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley InterScience, Wiley-VCH, Weinheim, 2008).

  18. 18.

    Balzani, V. Nanoscience and nanotechnology: the bottom-up construction of molecular devices and machines. Pure Appl. Chem. 80, 1631–1650 (2008).

  19. 19.

    Ashton, P. R., Belohradsdky, M., Philp, D., Spencer, N. & Stoddart, J. F. The self-assembly of [2]- and [3]-rotaxanes by slippage. J. Chem. Soc., Chem. Commun. 16, 1274–1277 (1993).

  20. 20.

    Loeb, S. J. & Wisner, J. A. [3]Rotaxanes employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown ethers. Chem. Commun. 845–846 (2000).

  21. 21.

    Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 5, 704–710 (2013).

  22. 22.

    Neal, E. A. & Goldup, S. M. A kinetic self-sorting approach to heterocircuit [3]rotaxanes. Angew. Chem. Int. Ed. 55, 12488–12493 (2016).

  23. 23.

    Barendt, T. A., Docker, A., Marques, I., Félix, V. & Beer, P. D. Selective nitrate recognition by a halogen-bonding four-station [3]rotaxane molecular shuttle. Angew. Chem. Int. Ed. 55, 11069–11076 (2016).

  24. 24.

    Noujeim, N., Zhu, K., Vukotic, V. N. & Loeb, S. J. [2]Pseudorotaxanes from T-shaped benzimidazolium axles and [24]crown-8 wheels. Org. Lett. 14, 2484–2487 (2012).

  25. 25.

    Zhu, K., Vukotic, V. N. & Loeb, S. J. Molecular shuttling of a compact and rigid, H-shaped [2]rotaxane. Angew. Chem. Int. Ed. 51, 2168–2172 (2012).

  26. 26.

    Zhu, K., Vukotic, V. N., Noujeim, N. & Loeb, S. J. Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles. Chem. Sci. 3, 3265–3271 (2012).

  27. 27.

    Kilbinger, A. F. M., Cantrill, S. J., Waltman, A. W., Day, M. W. & Grubbs, R. H. Magic ring rotaxanes by olefin metathesis. Angew. Chem. Int. Ed. 42, 3281–3285 (2003).

  28. 28.

    Baggi, G. & Loeb, S. J. Dialling-up the rotational co-conformations of a [2]rotaxane ligand. Angew. Chem. Int. Ed. 55, 12533–12537 (2016).

  29. 29.

    Vukotic, V. N., Zhu, K., Baggi, G. & Loeb, S. J. Optical distinction between ‘slow’ and ‘fast’ translational motion in degenerate molecular shuttles. Angew. Chem. Int. Ed. 56, 6136–6141 (2017).

  30. 30.

    Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

  31. 31.

    Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 90, 935–967 (1990).

  32. 32.

    Bain, A. D. Chemical exchange in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 43, 63–103 (2003).

  33. 33.

    Young, P. G., Hirose, K. & Tobe, Y. Axle length does not affect switching dynamics in degenerate molecular shuttles with rigid spacers. J. Am. Chem. Soc. 136, 7899–7906 (2014).

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through a Discovery Grant, an Accelerator Supplement and a Canada Research Chair award to S.J.L. S.J.L also acknowledges support from NSERC, the Canadian Foundation for Innovation, the Ontario Innovation Trust and the University of Windsor for the development and maintenance of the X-ray diffraction centre. The authors thank M. Revington and J. Auld for their technical assistance with NMR spectroscopy and electrospray mass spectrometry, respectively.

Author information

Affiliations

  1. School of Chemistry, Sun Yat-Sen University, Guangzhou, China

    • Kelong Zhu
  2. Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada

    • Giorgio Baggi
    •  & Stephen J. Loeb

Authors

  1. Search for Kelong Zhu in:

  2. Search for Giorgio Baggi in:

  3. Search for Stephen J. Loeb in:

Contributions

S.J.L. supervised the project. K.Z. designed the experiments, performed all the synthetic experiments and all the NMR characterization. K.Z. collected the single-crystal X-ray diffraction data and G.B. solved the X-ray structures. S.J.L. and K.Z. wrote the manuscript with input from G.B.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Kelong Zhu or Stephen J. Loeb.

Supplementary information

  1. Supplementary Information

    Supplementary synthesis and characterization details and analysis, Supplementary Figures 1–5

  2. Crystallographic data

    CIF for [2]rotaxane compound with embedded structure factor. CCDC number 1576710

  3. Crystallographic data

    CIF for [2]rotaxane compound with embedded structure factor. CCDC number 1576711

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0040-9

Further reading