Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes

Abstract

Alzheimer’s disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer’s disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer’s disease and the impairment of cholesterol homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic illustration of the strategy used in the present work.
Fig. 2: DMPC:cholesterol vesicles accelerate Aβ42 aggregation.
Fig. 3: Biophysical characterization of the effects of DMPC:cholesterol vesicles on Aβ42 fibrils.
Fig. 4: DMPC:cholesterol vesicles accelerate Aβ42 primary nucleation by up to 20-fold through a heterogeneous nucleation process.
Fig. 5: DMPC:cholesterol vesicles catalyse the formation of Aβ42 oligomers through heterogeneous nucleation.
Fig. 6

References

  1. 1.

    Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Alzheimer’s Dement 8, 131–168 (2012).

    Article  Google Scholar 

  2. 2.

    Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Tanzi, R. E. & Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120, 545–555 (2005).

    Article  CAS  Google Scholar 

  6. 6.

    Necula, M., Kayed, R., Milton, S. & Glabe, C. G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282, 10311–10324 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Di Paolo, G. & Kim, T.-W. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci. 12, 284–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gellermann, G. P. et al. Raft lipids as common components of human extracellular amyloid fibrils. Proc. Natl Acad. Sci. USA 102, 6297–6302 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9, 768–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Holtzman, D. M. Role of apoE/Aβ interactions in the pathogenesis of Alzheimer’s disease and cerebral amyloid angiopathy. J. Mol. Neurosci. 17, 147–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Popp, J. et al. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem. Pharmacol. 86, 37–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Mori, T. et al. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60, 778–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Zissimopoulos, J. M. et al. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol. 111, 390–400 (2016).

    Google Scholar 

  18. 18.

    Dietschy, J. M. & Turley, S. D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Vance, J. E. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis. Model. Mech. 5, 746–755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wood, W. G., Li, L., Müller, W. E. & Eckert, G. P. Cholesterol as a causative agent in Alzheimer disease a debatable hypothesis. J. Neurochem. 129, 559–572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Di Scala, C., Chahinian, H., Yahi, N., Garmy, N. & Fantini, J. Interaction of Alzheimer’s β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation. Biochemistry 53, 4489–4502 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Michaels, T. C. T., Lazell, H. W., Arosio, P. & Knowles, T. P. J. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. J. Chem. Phys. 143, 54901 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    Arosio, P., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci. 35, 127–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ghribi, O., Larsen, B., Schrag, M. & Herman, M. M. High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp. Neurol. 200, 460–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Barrett, P. J. et al. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 117, 2010–2013 (2012).

    Google Scholar 

  26. 26.

    Evangelisti, E. et al. Membrane lipid composition and its physicochemical properties define cell vulnerability to aberrant protein oligomers. J. Cell Sci. 125, 2416–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Hellstrand, E., Sparr, E. & Linse, S. Retardation of Aβ fibril formation by phospholipid vesicles depends on membrane phase behavior. Biophys. J. 98, 2206–2214 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yip, C. M., Elton, E. A Darabie, A. A., Morrison, M. R. & McLaurin, J. Cholesterol, a modulator of membrane-associated A beta-fibrillogenesis and neurotoxicity. J. Mol. Biol. 311,723–734 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 1, 13–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    Article  PubMed  Google Scholar 

  32. 32.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Meisl, G., Yang, X., Frohm, B., Knowles, T. P. J. & Linse, S. Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Aβ-peptide. Sci. Rep. 6, 18728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Arosio, P. et al. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 7, 10948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sormanni, P., Aprile, F. A. & Vendruscolo, M. Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 112, 9902–9907 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Habchi, J. et al. An anti-cancer drug suppresses the primary nucleation reaction that initiates the formation of toxic Aβ aggregates associated with Alzheimer’s disease. Sci. Adv. 2, e1501244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Habchi, J. et al. Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E200–E208 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Sastry, P. S. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24, 69–176 (1985).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Mouritsen, O. G. Life—As a Matter of Fat (Springer, Berlin, 2005).

  44. 44.

    Cotman, C. W., Blank, M., Moehl, A. & Snyder, F. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochemistry 8, 4606–4612 (1969).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Nagle, J. F. et al. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys. J. 70, 1419–1431 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Kucerka, N. et al. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88, 2626–2637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chi, E. Y. et al. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer’s disease amyloid-β peptide. Prot. Struct. Funct. Genet. 72, 1–24 (2008).

    Article  CAS  Google Scholar 

  48. 48.

    Niu, Z. et al. The molecular structure of Alzheimer β-amyloid fibrils formed in the presence of phospholipid vesicles. Angew. Chem. Int. Ed. 53, 9294–9297 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Simons, K. & Vaz, W. L. C. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Filippov, A., Orädd, G. & Lindblom, G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys. J. 84, 3079–3086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Barrett, M. A. et al. Solubility of cholesterol in lipid membranes and the formation of immiscible cholesterol plaques at high cholesterol concentrations. Soft Matter 9, 9342–9351 (2013).

    Article  CAS  Google Scholar 

  52. 52.

    Almeida, P. F., Vaz, W. L. & Thompson, T. E. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31, 6739–6747 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Blume, A. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta Biomembr. 557, 32–44 (1979).

    Article  CAS  Google Scholar 

  54. 54.

    Wimley, W. C. & Thompson, T. E. Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles. Biochemistry 30, 1702–1709 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Harris, F. M., Best, K. B. & Bell, J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta Biomembr. 1565, 123–128 (2002).

    Article  CAS  Google Scholar 

  56. 56.

    Aguilar, L. F. et al. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes. PLoS One 7, e40254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Galvagnion, C. et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc. Natl Acad. Sci. USA 113, 7065–7070 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    De Meyer, F. & Smit, B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl Acad. Sci. USA 106, 3654–3658 (2009).

    Article  PubMed  Google Scholar 

  59. 59.

    de Jongh, H. H. J., Goormaghtigh, E. & Killian, J. A. Analysis of circular dichroism spectra of oriented protein–lipid complexes: toward a general application. Biochemistry 33, 14521–14528 (1994).

    Article  PubMed  Google Scholar 

  60. 60.

    Linse, S. & Lund, M. Surface effects on aggregation kinetics of amyloidogenic peptides. J. Am. Chem. Soc. 136, 11555–11850 (2014).

    Article  Google Scholar 

  61. 61.

    Ruggeri, F. S. et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 6, 31155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zandomeneghi, G., Krebs, M. R. H., McCammon, M. G. & Fändrich, M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 13, 3314–3321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Arosio, P., Knowles, T. P. J. & Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys. 17, 7606–7618 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J. Chem. Phys. 135, 65106 (2011).

    Article  CAS  Google Scholar 

  65. 65.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations. J. Chem. Phys. 135, 65107 (2011).

    Article  CAS  Google Scholar 

  66. 66.

    Cohen, S. I. A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 65105 (2011).

    Article  CAS  Google Scholar 

  67. 67.

    Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Hong, S. et al. Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82, 308–319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Centre for Misfolding Diseases (J.H., S.C., T.C.T.M., M.M.J.B., F.S.R., M.S., J.R.K., C.M.D., T.P.J.K. and M.V.); the Agency for Science, Technology and Research, Singapore (S.C.); a Marie Skłodowska-Curie Actions — Individual Fellowship (C.G.); Peterhouse College, Cambridge (T.C.T.M.); the Swiss National Science Foundation (T.C.T.M., F.S.R.); the NIH-Oxford/Cambridge Scholars Program (M.M.J.B.); the Cambridge Commonwealth, European and International Trust (M.M.J.B.); the Knut & Alice Wallenberg Foundation (S.L., E.S.); the European Research Council (S.L.); the Swedish Research Council (S.L., E.S.) the Frances and Augustus Newman Foundation (T.P.J.K.); the UK Biotechnology and Biochemical Sciences Research Council (C.M.D. and M.V.); and the Wellcome Trust (C.M.D., T.P.J.K. and M.V.). This work was supported by the Intramural Research Program of the National Institute of Diabetes and Kidney Diseases, NIH.

Author information

Affiliations

Authors

Contributions

J.H., S.C., C.G., T.C.T.M., E.S., S.L., C.M.D., T.P.J.K. and M.V. designed the research. J.H., S.C., C.G., F.S.R., M.S. and I.I. performed the research. J.H., S.C., C.G., F.S.R., I.I., J.R.K., E.S., S.L., C.M.D., T.P.J.K. and M.V. contributed reagents/analytic tools. J.H., S.C., C.G., T.C.T.M., M.M.J.B., F.S.R., E.S., S.L., C.M.D., T.P.J.K. and M.V. analysed the data. All authors discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Michele Vendruscolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habchi, J., Chia, S., Galvagnion, C. et al. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chem 10, 673–683 (2018). https://doi.org/10.1038/s41557-018-0031-x

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing