Article | Published:

Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation

Nature Chemistryvolume 10pages561567 (2018) | Download Citation


Molecular interactions are best probed by scattering experiments. Interpretation of these studies has been limited by lack of control over the quantum states of the incoming collision partners. We report here the rotationally inelastic collisions of quantum-state prepared deuterium hydride (HD) with H2 and D2 using a method that provides an improved control over the input states. HD was coexpanded with its partner in a single supersonic beam, which reduced the collision temperature to 0–5 K, and thereby restricted the involved incoming partial waves to s and p. By preparing HD with its bond axis preferentially aligned parallel and perpendicular to the relative velocity of the colliding partners, we observed that the rotational relaxation of HD depends strongly on the initial bond-axis orientation. We developed a partial-wave analysis that conclusively demonstrates that the scattering mechanism involves the exchange of internal angular momentum between the colliding partners. The striking differences between H2/HD and D2/HD scattering suggest the presence of anisotropically sensitive resonances.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Blatt, J. M. & Biedenharn, L. C. The angular distribution of scattering and reaction cross sections. Rev. Mod. Phys. 24, 258–272 (1952).

  2. 2.

    Arthurs, A. M. & Dalgarno, A. The theory of scattering by a rigid rotator. Proc. R. Soc. A 256, 540–551 (1960).

  3. 3.

    Warren, W. S., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993).

  4. 4.

    Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

  5. 5.

    PanH., Wang, F,. Czakó, G. & Liu, K. Direct mapping of the angle-dependent barrier to reaction for Cl + CHD3 using polarized scattering data. Nat. Chem. 9, 1175–1180 (2017).

  6. 6.

    Smith, G. P. & Zare, R. N. Angular distribution of product internal states using laser fluorescence detection: the Ba + KCl reaction. J. Chem. Phys. 64, 2632–2640 (1976).

  7. 7.

    Lin, J. J., Zhou, J., Shiu, W. & Liu, K. State-specific correlation of coincident product pairs in the F + CD4 reaction. Science 300, 966–969 (2003).

  8. 8.

    Bartlett, N. C.-M. et al. Differential cross sections for H + D2 → HD(v′ = 2, j′ = 0,3,6,9) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV. Phys. Chem. Chem. Phys. 13, 8175–8179 (2011).

  9. 9.

    Stuhl, B. K., Hummon, M. T. & Ye, J. Cold state-selected molecular collisions and reactions. Annu. Rev. Phys. Chem. 65, 501–518 (2014).

  10. 10.

    Naulin, C. & Costes, M. Experimental search for scattering resonances in near cold molecular collisions. Int. Rev. Phys. Chem. 33, 427–446 (2014).

  11. 11.

    Aoiz, F. J. et al. A new perspective: imaging the stereochemistry of molecular collisions. Phys. Chem. Chem. Phys. 17, 30210–30228 (2015).

  12. 12.

    Loesch, H. J. Orientation and alignment in reactive beam collisions: recent progress. Annu. Rev. Phys. Chem. 46, 555–594 (1995).

  13. 13.

    Jones, E. M. & Brooks, P. R. Focusing and orienting asymmetric-top molecules in molecular beams. J. Chem. Phys. 53, 55–58 (1970).

  14. 14.

    Loesch, H. J. & Remscheid, A. Brute force in molecular reaction dynamics: a novel technique for measuring steric effects. J. Chem. Phys. 93, 4779 (1990).

  15. 15.

    van Leuken, J. J., van Amerom, F. H. W., Bulthuis, J., Snijders, J. G. & Stolte, S. Parity-resolved rotationally inelastic collisions of hexapole state-selected NO (2Π1/2, J = 0.5) with Ar. J. Phys. Chem. 99, 15573–15579 (1995).

  16. 16.

    Brouard, M. et al. Fully quantum state-resolved inelastic scattering of NO(X) + Kr: differential cross sections and product rotational alignment. J. Chem. Phys. 141, 164306 (2014).

  17. 17.

    Watanabe, D., Ohoyama, H., Matsumura, T. & Kasai, T. Effect of mutual configuration between molecular orientation and atomic orientation in the oriented Ar + oriented CF3H reaction. Phys. Rev. Lett. 99, 1–4 (2007).

  18. 18.

    Brouard, M., Parker, D. H. & van de Meerakker, S. Y. T. Taming molecular collisions using electric and magnetic fields. Chem. Soc. Rev. 43, 7279–7294 (2014).

  19. 19.

    Rohlfing, E. A., Chandler, D. W. & Parker, D. H. Direct measurement of rotational energy transfer rate constants for HCl (v = 1). J. Chem. Phys. 87, 5229–5237 (1987).

  20. 20.

    Dittmann, P. et al. The effect of vibrational excitation (3 ≤ v′ ≤ 19) on the reaction Na2 (v′) + Cl → NaCl + Na. J. Chem. Phys. 97, 9472 (1992).

  21. 21.

    Liu, K. Perspective: vibrational-induced steric effects in bimolecular reactions. J. Chem. Phys. 142, 80901 (2015).

  22. 22.

    Palla, F., Galli, D. & Silk, J. Deuterium in the universe. Astrophys. J. 451, 44–50 (1995).

  23. 23.

    Dong, W., Mukherjee, N. & Zare, R. N. Optical preparation of H2 rovibrational levels with almost complete population transfer. J. Chem. Phys. 139, 74204 (2013).

  24. 24.

    Mukherjee, N., Dong, W. & Zare, R. N. Coherent superposition of M-states in a single rovibrational level of H2 by Stark-induced adiabatic Raman passage. J. Chem. Phys. 140, 74201 (2014).

  25. 25.

    Weck, P. F. & Balakrishnan, N. Importance of long-range interactions in chemical reactions at cold and ultracold temperatures. Int. Rev. Phys. Chem. 25, 283–311 (2006).

  26. 26.

    Quéméner, G, Balakrishnan, N. & Dalgamo, A. in Stwalley, W. C., Krems, R. V. & Friedrich, B. (eds) Cold Molecules: Theory, Experiment, Applications 69–124 (CRC, Boca Raton, 2009)..

  27. 27.

    Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

  28. 28.

    de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

  29. 29.

    van de Meerakker, S. Y., Bethlem, H. L., Vanhaecke, N. & Meijer, G. Manipulation and control of molecular beams. Chem. Rev. 112, 4828–4878 (2012).

  30. 30.

    Rowe, B. R. & Marquette, J. B. CRESU studies of ion/molecule reactions. Int. J. Mass Spectrom. Ion. Process 80, 239–254 (1987).

  31. 31.

    Shagam, Y. et al. Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions. Nat. Chem. 7, 921–926 (2015).

  32. 32.

    Chefdeville, S. et al. Observation of partial wave resonances in low-energy O2–H2 inelastic collisions. Science 341, 1094–1096 (2013).

  33. 33.

    Perreault, W. E., Mukherjee, N. & Zare, R. N. Quantum control of molecular collisions at 1 kelvin. Science 358, 356–359 (2017).

  34. 34.

    Amarasinghe, C. & Suits, A. G. Intrabeam scattering for ultracold collisions. J. Phys. Chem. Lett. 8, 5153–5159 (2017).

  35. 35.

    Perreault, W. E., Mukherjee, N. & Zare, R. N. Angular and internal state distributions of H2 + generated by (2 + 1) resonance enhanced multiphoton ionization of H2 using time-of-flight mass spectrometry. J. Chem. Phys. 144, 214201 (2016).

  36. 36.

    Perreault, W. E., Mukherjee, N. & Zare, R. N. Preparation of a selected high vibrational energy level of isolated molecules. J. Chem. Phys. 145, 154203 (2016).

  37. 37.

    Buck, U., Huisken, F., Maneke, G. & Schaefer, J. State resolved rotational excitation in HD + D2 collisions. I. Angular dependence of 0→2 transitions. J. Chem. Phys. 74, 535–544 (1981).

  38. 38.

    Buck, U. Rotationally inelastic scattering of hydrogen molecules and the non-spherical interaction. Faraday Discuss. Chem. Soc. 73, 187–203 (1982).

  39. 39.

    Schaefer, J. Rotational integral cross sections and rate coeffients of HD scattered by He and H2. Astron. Astrophys. Suppl. Ser. 85, 1101–1125 (1990).

  40. 40.

    Lee, T.-G. et al. State-to-state rotational transitions in H2 + H2 collisions at low temperatures. J. Chem. Phys. 125, 114302 (2006).

  41. 41.

    Lavert-Ofir, E. et al. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6, 332–335 (2014).

Download references


This work has been supported by the US Army Research Office under ARO Grant No. W911NF-16-1-1061 and MURI Grant No. W911NF-12-1-0476.

Author information


  1. Department of Chemistry, Stanford University, Stanford, CA, USA

    • William E. Perreault
    • , Nandini Mukherjee
    •  & Richard N. Zare


  1. Search for William E. Perreault in:

  2. Search for Nandini Mukherjee in:

  3. Search for Richard N. Zare in:


All authors conceived of this study. W.E.P. and N.M. carried out the experimental work. N.M. developed the partial-wave analysis used to interpret the data. All the authors wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Nandini Mukherjee or Richard N. Zare.

Supplementary information

  1. Supplementary Information

    Supplementary Results and Analysis, Supplementary Tables 1–9

About this article

Publication history




Issue Date