Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly

Abstract

Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe–4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe–4S] cluster of HydG. The identification of this intermediate—the first organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: [FeFe] hydrogenase (HydA) H-cluster bioassembly.
Fig. 2: Deconvolution of the HydG reaction EPR spectra.
Fig. 3: 13C Mims-ENDOR spectra of the HydG reaction mixtures generated under the standard condition.
Fig. 4: 57Fe HYSCORE spectra of HydG reaction mixture generated under the standard condition.
Fig. 5: Dicyano analogue of Complex A.

Similar content being viewed by others

References

  1. Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    CAS  PubMed  Google Scholar 

  2. Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  PubMed  Google Scholar 

  3. Barber, J. & Tran, P. D. From natural to artificial photosynthesis. J. R. Soc. Interface 10, 20120984 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 ångström resolution. Science 282, 1853–1858 (1998).

    CAS  PubMed  Google Scholar 

  5. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13–23 (1999).

    CAS  PubMed  Google Scholar 

  6. Broderick, J. B. et al. H-cluster assembly during maturation of the [FeFe]-hydrogenase. J. Biol. Inorg. Chem. 19, 747–757 (2014).

    CAS  PubMed  Google Scholar 

  7. Vincent, K. A., Parkin, A. & Armstrong, F. A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107, 4366–4413 (2007).

    CAS  PubMed  Google Scholar 

  8. Suess, D. L. M., Kuchenreuther, J. M., de la Paz, L., Swartz, J. R. & Britt, R. D. Biosynthesis of the [FeFe] hydrogenase H cluster: a central role for the radical SAM enzyme HydG. Inorg. Chem. 55, 478–487 (2016).

    CAS  PubMed  Google Scholar 

  9. Birrell, J. A., Rüdiger, O., Reijerse, E. J. & Lubitz, W. Semisynthetic hydrogenases propel biological energy research into a new era. Joule 1, 61–76 (2017).

    CAS  Google Scholar 

  10. Shepard, E. M. et al. [FeFe]-hydrogenase maturation. Biochemistry 53, 4090–4104 (2014).

    CAS  PubMed  Google Scholar 

  11. Peters, J. W. et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369 (2015).

    CAS  PubMed  Google Scholar 

  12. Mulder, D. W. et al. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19, 1038–1052 (2011).

    CAS  PubMed  Google Scholar 

  13. Boyer, M. E., Stapleton, J. A., Kuchenreuther, J. M., Wang, C. W. & Swartz, J. R. Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol. Bioeng. 99, 59–67 (2008).

    CAS  PubMed  Google Scholar 

  14. Posewitz, M. C. et al. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711–25720 (2004).

    CAS  PubMed  Google Scholar 

  15. McGlynn, S. E. et al. HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett. 582, 2183–2187 (2008).

    CAS  PubMed  Google Scholar 

  16. Pilet, E. et al. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett. 583, 506–511 (2009).

    CAS  PubMed  Google Scholar 

  17. Mulder, D. W. et al. Activation of HydAΔEFG requires a preformed [4Fe-4S] cluster. Biochemistry 48, 6240–6248 (2009).

    CAS  PubMed  Google Scholar 

  18. Mulder, D. W. et al. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–251 (2010).

    CAS  PubMed  Google Scholar 

  19. Shepard, E. M. et al. Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc. Natl Acad. Sci. USA 107, 10448–10453 (2010).

    CAS  PubMed  Google Scholar 

  20. Kuchenreuther, J. M., Britt, R. D. & Swartz, J. R. New insights into [FeFe] hydrogenase activation and maturase function. PLoS ONE 7, e45850 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Berto, P. et al. The [4Fe-4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies. Biochim. Biophys. Acta 1817, 2149–2157 (2012).

    CAS  PubMed  Google Scholar 

  22. Kuchenreuther, J. M., George, S. J., Grady-Smith, C. S., Cramer, S. P. & Swartz, J. R. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN ligands derive from tyrosine. PLoS ONE 6, e20346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Driesener, R. C. et al. [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew. Chem. Int. Ed. 49, 1687–1690 (2010).

    CAS  Google Scholar 

  24. Shepard, E. M. et al. [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 132, 9247–9249 (2010).

    CAS  PubMed  Google Scholar 

  25. Kuchenreuther, J. M. et al. The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343, 424–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Driesener, R. C. et al. Biochemical and kinetic characterization of radical S-adenosyl-l-methionine enzyme HydG. Biochemistry 52, 8696–8707 (2013).

    CAS  PubMed  Google Scholar 

  27. Kuchenreuther, J. M. et al. A radical intermediate in tyrosine scission to the CO and CN ligands of FeFe hydrogenase. Science 342, 472–475 (2013).

    CAS  PubMed  Google Scholar 

  28. Rubach, J. K., Brazzolotto, X., Gaillard, J. & Fontecave, M. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett. 579, 5055–5060 (2005).

    CAS  PubMed  Google Scholar 

  29. Nicolet, Y. et al. Crystal structure of HydG from Carboxydothermus hydrogenoformans: a trifunctional [FeFe]-hydrogenase maturase. ChemBioChem 16, 397–402 (2015).

    CAS  PubMed  Google Scholar 

  30. Pagnier, A., Martin, L., Zeppieri, L., Nicolet, Y. & Fontecilla-Camps, J. C. CO and CN syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc. Natl Acad. Sci. USA 113, 104–109 (2016).

    CAS  PubMed  Google Scholar 

  31. Nicolet, Y., Zeppieri, L., Amara, P. & Fontecilla-Camps, J. C. Crystal structure of tryptophan lyase (NosL): evidence for radical formation at the amino group of tryptophan. Angew. Chem. Int. Ed. 53, 11840–11844 (2014).

    CAS  Google Scholar 

  32. Dinis, P. et al. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc. Natl Acad. Sci. USA 112, 1362–1367 (2015).

    CAS  PubMed  Google Scholar 

  33. Suess, D. L. M. et al. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Proc. Natl. Acad Sci. USA 112, 11455–11460 (2015).

    CAS  PubMed  Google Scholar 

  34. Suess, D. L. M. et al. The radical SAM enzyme HydG requires cysteine and a dangler iron for generating an organometallic precursor to the [FeFe]-hydrogenase H-cluster. J. Am. Chem. Soc. 138, 1146–1149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Morton, J. R. & Preston, K. F. Atomic parameters for paramagnetic resonance data. J. Magn. Reson. 30, 577–582 (1978).

    CAS  Google Scholar 

  36. Lanz, N. D. et al. Characterization of a radical intermediate in lipoyl cofactor biosynthesis. J. Am. Chem. Soc. 137, 13216–13219 (2015).

    CAS  PubMed  Google Scholar 

  37. Silakov, A., Reijerse, E. J., Albracht, S. P., Hatchikian, E. C. & Lubitz, W. The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study. J. Am. Chem. Soc. 129, 11447–11458 (2007).

    CAS  PubMed  Google Scholar 

  38. Gilbert-Wilson, R. et al. Spectroscopic investigations of [FeFe] hydrogenase maturated with [57Fe2(adt)(CN)2(CO)4]2–. J. Am. Chem. Soc. 137, 8998–9005 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Carepo, M. et al. 17O ENDOR detection of a solvent-derived Ni-(OHx)-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas. J. Am. Chem. Soc. 124, 281–286 (2002).

    CAS  PubMed  Google Scholar 

  40. Pandelia, M. E., Ogata, H. & Lubitz, W. Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11, 1127–1140 (2010).

    CAS  PubMed  Google Scholar 

  41. Christner, J. A., Janick, P. A., Siegel, L. M. & Munck, E. Mössbauer studies of Escherichia coli sulfite reductase complexes with carbon monoxide and cyanide. Exchange coupling and intrinsic properties of the [4Fe-4S] cluster. J. Biol. Chem. 258, 11157–11164 (1983).

    CAS  PubMed  Google Scholar 

  42. Krueger, R. J. & Siegel, L. M. Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 21, 2892–2904 (1982).

    CAS  PubMed  Google Scholar 

  43. Krueger, R. J. & Siegel, L. M. Evidence for siroheme–Fe4S4 interaction in spinach ferredoxin-sulfite reductase. Biochemistry 21, 2905–2909 (1982).

    CAS  PubMed  Google Scholar 

  44. Winkler, M. et al. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat. Commun. 8, 16115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mulder, D. W., Guo, Y., Ratzloff, M. W. & King, P. W. Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase. J. Am. Chem. Soc. 139, 83–86 (2017).

    CAS  PubMed  Google Scholar 

  46. Reijerse, E. J. et al. Direct observation of an iron-bound terminal hydride in [FeFe]-hydrogenase by nuclear resonance vibrational spectroscopy. J. Am. Chem. Soc. 139, 4306–4309 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Swartz from Stanford University for providing the E. coli strain overexpressing SoHydG. This work is supported by National Institute of Health (GM104543). Correspondence and requests for materials should be addressed to R.D.B. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

G.R., L.T., D.L.M.S. and R.D.B. designed the experiments. G.R., L.T. and D.L.M.S. performed the experiments and analysed the data. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to R. David Britt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Table 1, Spectra, Figures and Notes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G., Tao, L., Suess, D.L.M. et al. A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Nature Chem 10, 555–560 (2018). https://doi.org/10.1038/s41557-018-0026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0026-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing