Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

Abstract

Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cellular mRNA analysis approach.
Fig. 2: Cell capture and profiling mediated by mRNA-directed magnetic nanoparticles.
Fig. 3: Analysis of clinically relevant mRNAs.
Fig. 4: Analysis of clinical samples.

References

  1. 1.

    Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  2. 2.

    Bendall, S. C. & Nolan, G. P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012).

    CAS  PubMed  Google Scholar 

  3. 3.

    Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kalinich, M. et al. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 114, 1123–1128 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Clark, I. C. & Abate, A. R. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab Chip 17, 2032–2045 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Briley, W. E., Bondy, M. H., Randeria, P. S., Dupper, T. J. & Mirkin, C. A. Quantification and real-time tracking of RNA in live cells using Sticky-flares. Proc. Natl Acad. Sci. USA 112, 9591–95955 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    CAS  PubMed  Google Scholar 

  8. 8.

    Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Livak, K. J. et al. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods 59, 71–79 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lyubimova, A. et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protocol. 8, 1743–1758 (2013).

    PubMed  Google Scholar 

  11. 11.

    Itzkovitz, S. & van Oudenaarden, A. Validating transcripts with probes and imaging technology. Nat. Methods 8, S12–S19 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Halo, T. L. et al. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl Acad. Sci. USA 111, 17104–17109 (2014).

    CAS  PubMed  Google Scholar 

  13. 13.

    Alix-Panabieres, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    CAS  PubMed  Google Scholar 

  14. 14.

    Lang, J. M., Casavant, B. P. & Beebe, D. J. Circulating tumor cells: getting more from less. Sci. Transl. Med. 4, 141ps113 (2012).

    Google Scholar 

  15. 15.

    Green, B. J. et al. Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew. Chem. Int. Ed. 55, 1252–1265 (2016).

    CAS  Google Scholar 

  16. 16.

    Zhang, J., Chen, K. & Fan, Z. H. Circulating tumor cell isolation and analysis. Adv. Clin. Chem. 75, 1–31 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhang, J., Sheng, W. & Fan, Z. H. An ensemble of aptamers and antibodies for multivalent capture of cancer cells. Chem. Commun. 50, 6722–6725 (2014).

    CAS  Google Scholar 

  18. 18.

    Hu, X. et al. Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl Acad. Sci. USA 102, 15757–15761 (2005).

    CAS  PubMed  Google Scholar 

  19. 19.

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Adams, A. A. et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130, 8633–8641 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975 (2009).

    CAS  PubMed  Google Scholar 

  22. 22.

    Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Schiro, P. G. et al. Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew. Chem. Int. Ed. 51, 4618–4622 (2012).

    CAS  Google Scholar 

  24. 24.

    Zhao, W. et al. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl Acad. Sci. USA 109, 19626–19631 (2012).

    CAS  PubMed  Google Scholar 

  25. 25.

    Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra147 (2013).

    Google Scholar 

  26. 26.

    Zhang, Y., Wu, M., Han, X., Wang, P. & Qin, L. High-throughput, label-free isolation of cancer stem cells on the basis of cell adhesion capacity. Angew. Chem. Int. Ed. 54, 10838–10842 (2015).

    CAS  Google Scholar 

  27. 27.

    Zhang, Y., Zhou, L. & Qin, L. High-throughput 3D cell invasion chip enables accurate cancer metastatic assays. J. Am. Chem. Soc. 136, 15257–15262 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yoon, H. J. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 8, 735–741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 12, 274–281 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Altieri, D. C. Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer 3, 46–54 (2003).

    CAS  PubMed  Google Scholar 

  31. 31.

    Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 11, 109–124 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Carrasco, R. A. et al. Antisense inhibition of survivin expression as a cancer therapeutic. Mol. Cancer Ther. 10, 221–232 (2011).

    CAS  PubMed  Google Scholar 

  33. 33.

    Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    CAS  PubMed  Google Scholar 

  41. 41.

    Chuah, K. et al. Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem. Commun. 48, 3503–3505 (2012).

    CAS  Google Scholar 

  42. 42.

    Farlow, J. et al. Formation of targeted monovalent quantum dots by steric exclusion. Nat. Methods 10, 1203–1205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the Canadian Institutes of Health Research (grant no. FDN-148415), the Natural Sciences and Engineering Research Council of Canada (grant no. 2016-06090), the Province of Ontario through the Ministry of Research, Innovation and Science (grant no. RE05-009), and the National Cancer Institute of the National Institutes of Health (grant no. 1R33CA204574). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the other funding agencies. We also thank A. Joshua at the Princess Margaret Hospital for supplying clinical specimens.

Author information

Affiliations

Authors

Contributions

M.L., S.O.K. and E.H.S. conceived and designed the experiments; M.L., R.M.M., M.P., S.U.A., I.I., C.-L.H. and M.M. performed the experiments and analysed the data. All authors discussed the results and contributed to the preparation and editing of the manuscript.

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables, Supplementary Figs. and Supplementary Simulations

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labib, M., Mohamadi, R.M., Poudineh, M. et al. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nature Chem 10, 489–495 (2018). https://doi.org/10.1038/s41557-018-0025-8

Download citation

Further reading