Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide

Abstract

Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer’s disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Kinetics of Aβ42 aggregation from purely monomeric peptide at different temperatures and initial concentrations.
Fig. 2: Kinetics of pre-seeded Aβ42 aggregation at different temperatures and initial monomer concentrations.
Fig. 3: Arrhenius behaviour of the microscopic rate constants for Aβ42 aggregation.
Fig. 4: Activation energies of fibril elongation, primary nucleation and secondary nucleation in Aβ42 amyloid formation.
Fig. 5: Mapping the free-energy landscape for secondary nucleation.

References

  1. 1.

    Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    CAS  PubMed  Google Scholar 

  2. 2.

    Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  3. 3.

    Sipe, J. D. et al. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 19, 167–170 (2012).

    CAS  PubMed  Google Scholar 

  4. 4.

    Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    CAS  PubMed  Google Scholar 

  5. 5.

    Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    CAS  PubMed  Google Scholar 

  6. 6.

    Lee, J., Culyba, E. K., Powers, E. T. & Kelly, J. W. Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nat. Chem. Biol. 7, 602–609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    CAS  PubMed  Google Scholar 

  8. 8.

    Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).

    CAS  PubMed  Google Scholar 

  9. 9.

    Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 1, 13–18 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Cohen, S. I. A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kar, K., Jayaraman, M., Sahoo, B., Kodali, R. & Wetzel, R. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat. Struct. Mol. Biol. 18, 328–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, New York, NY, 1975).

  14. 14.

    Jarrett, J. T. & Lansbury, P. T. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in alzheimer’s disease and scrapie? Cell 73, 1055–1058 (1993).

    CAS  Google Scholar 

  15. 15.

    Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jeong, J. S., Ansaloni, A., Mezzenga, R., Lashuel, H. A. & Dietler, G. Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation. J. Mol. Biol. 425, 1765–1781 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ruschak, A. M. & Miranker, A. D. Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc. Natl Acad. Sci. USA 104, 12341–12346 (2007).

    CAS  PubMed  Google Scholar 

  18. 18.

    Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc. Natl Acad. Sci. USA 111, 7671–7676 (2014).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).

    CAS  PubMed  Google Scholar 

  20. 20.

    Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  21. 21.

    Walsh, D. M. et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    CAS  Google Scholar 

  22. 22.

    Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    CAS  PubMed  Google Scholar 

  23. 23.

    Knowles, T. P. J. et al. Observation of spatial propagation of amyloid assembly from single nuclei. Proc. Natl Acad. Sci. USA 108, 14746–14751 (2011).

    CAS  PubMed  Google Scholar 

  24. 24.

    Cohen, S. I. A. et al. Spatial propagation of protein polymerization. Phys. Rev. Lett. 112, 098101 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J. Chem. Phys. 135, 065106 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    CAS  PubMed  Google Scholar 

  29. 29.

    Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002).

    CAS  PubMed  Google Scholar 

  30. 30.

    Kramers, H. A. Brownian motion in a field of forceand the diffusion model of chemical reactions. Physica 7, 284 (1940).

    CAS  Google Scholar 

  31. 31.

    Zwanzig, R. Two-state models of protein folding kinetics. Proc. Natl Acad. Sci. USA 94, 148–150 (1997).

    CAS  PubMed  Google Scholar 

  32. 32.

    Buell, A. K. et al. Frequency factors in a landscape model of filamentous protein aggregation. Phys. Rev. Lett. 104, 228101 (2010).

    PubMed  Google Scholar 

  33. 33.

    Buell, A. K. et al. Detailed analysis of the energy barriers for amyloid fibril growth. Angew. Chem. Int. Ed. 51, 5247–5251 (2012).

    CAS  Google Scholar 

  34. 34.

    Zwanzig, R. Diffusion in a rough potential. Proc. Natl Acad. Sci. USA 85, 2029–2030 (1988).

    CAS  PubMed  Google Scholar 

  35. 35.

    Knowles, T. P. J. et al. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc. Natl Acad. Sci. USA 104, 10016–10021 (2007).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kashchiev, D. & Auer, S. Nucleation of amyloid fibrils. J. Chem. Phys. 132, 215101 (2010).

    PubMed  Google Scholar 

  37. 37.

    Mozurkewich, M. & Benson, S. W. Negative activation energies and curved arrhenius plots. 1. theory of reactions over potential wells. J. Phys. Chem. 88, 6429–6435 (1984).

    CAS  Google Scholar 

  38. 38.

    Oliveberg, M., Tan, Y. J. & Fersht, A. R. Negative activation enthalpies in the kinetics of protein folding. Proc. Natl Acad. Sci. USA 92, 8926–8929 (1995).

    CAS  PubMed  Google Scholar 

  39. 39.

    Saric, A. et al. Physical determinants of the self-replication of protein fibrils. Nat. Phys. 12, 874–880 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Roduner, E. Understanding catalysis. Chem. Soc. Rev. 43, 8226–8239 (2014).

    CAS  PubMed  Google Scholar 

  41. 41.

    Medford, A. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Cat. 328, 36–42 (2015).

    CAS  Google Scholar 

  42. 42.

    Anwar, J., Khan, S. & Lindfors, L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. 54, 14681–14684 (2015).

    CAS  Google Scholar 

  43. 43.

    Cukalevski, R. et al. The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chem. Sci. 6, 4215–4233 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Walsh, D. M. et al. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid beta-peptide. FEBS J. 276, 1266–1281 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lührs, T. et al. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl Acad. Sci. USA 102, 17342–17347 (2005).

    PubMed  Google Scholar 

  46. 46.

    Crescenzi, O. et al. Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. similarity with a virus fusion domain. Eur. J. Biochem. 269, 5642–5648 (2002).

    CAS  PubMed  Google Scholar 

  47. 47

    Young, L. J., Kaminski Schierle, G. S. & Kaminski, C. F. Imaging Aβ(1-42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys. Chem. Chem. Phys. 19, 27987–27996 (2017).

Download references

Acknowledgements

We thank B. Jönsson and I. André for helpful discussions. We acknowledge financial support from the Schiff Foundation (S.I.A.C.), St John’s College, Cambridge (S.I.A.C.), the Royal Physiographic Society (R.C.), the Research School FLÄK of Lund University (S.L., R.C.), the Swedish Research Council (S.L.) and its Linneaus Centre Organizing Molecular Matter (S.L.), the Crafoord Foundation (S.L.), Alzheimerfonden (S.L.), the European Research Council (S.L.), NanoLund (S.L.), Knut and Alice Wallenberg Foundation (S.L.), Peterhouse, Cambridge (T.C.T.M.), the Swiss National Science Foundation (T.C.T.M.), Magdalene College, Cambridge (A.K.B.), the Leverhulme Trust (A.K.B.), the Royal Society (A.Š.), the Academy of Medical Sciences (A.Š.), the Wellcome Trust (C.M.D., T.P.J.K., A.Š.), and the Centre for Misfolding Diseases (C.M.D., T.P.J.K, M.V.). A.K.B. thanks the Alzheimer Forschung Initiative (AFI).

Author information

Affiliations

Authors

Contributions

S.I.A.C., R.C., T.P.J.K. and S.L. designed the study. R.C., M.T. and S.L. performed the experiments. S.I.A.C., A.K.B., T.C.T.M., A.Š. and T.P.J.K. analysed the data. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Tuomas P. J. Knowles or Sara Linse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Methods and Supplementary Figs. 1–6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, S.I.A., Cukalevski, R., Michaels, T.C.T. et al. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. Nature Chem 10, 523–531 (2018). https://doi.org/10.1038/s41557-018-0023-x

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing