Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative communication within and between single nanocatalysts

Abstract

Enzymes often show catalytic allostery in which reactions occurring at different sites communicate cooperatively over distances of up to a few nanometres. Whether such effects can occur with non-biological nanocatalysts remains unclear, even though these nanocatalysts can undergo restructuring and molecules can diffuse over catalyst surfaces. Here we report that phenomenologically similar, but mechanistically distinct, cooperative effects indeed exist for nanocatalysts. Using spatiotemporally resolved single-molecule catalysis imaging, we find that catalytic reactions on a single Pd or Au nanocatalyst can communicate with each other, probably via hopping of positively charged holes on the catalyst surface, over ~102 nanometres and with a temporal memory of ~101 to 102 seconds, giving rise to positive cooperativity among its surface active sites. Similar communication is also observed between individual nanocatalysts, however it operates via a molecular diffusion mechanism involving negatively charged product molecules, and its communication distance is many micrometres. Generalization of these long-range intra- and interparticle catalytic communication mechanisms may introduce a novel conceptual framework for understanding nanoscale catalysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Real-time, single-molecule, super-resolution mapping of catalytic reactions on single nanocatalysts.
Fig. 2: Intraparticle catalytic communication within single Pd and Au nanocatalysts.
Fig. 3: Non-universality of interparticle catalytic communication.
Fig. 4: Nature of intraparticle catalytic messenger for Pd nanorods catalysing resazurin disproportionation.
Fig. 5: Mechanism of interparticle catalytic communication for Au nanorods catalysing deacetylation reaction.

Similar content being viewed by others

References

  1. Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (WH Freeman and Company, 1998).

  2. Changeux, J.-P. Allostery and the monod-wyman-changeux model after 50 years. Annu. Rev. Biochem. 41, 103–133 (2012).

    CAS  Google Scholar 

  3. Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. De Cremer, G. et al. Dynamic disorder and stepwise deactivation in a chymotrypsin catalyzed hydrolysis reaction. J. Am. Chem. Soc. 129, 15458–15459 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  7. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocrystals. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hervés, P. et al. Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem. Soc. Rev. 41, 5577–5587 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, W., Kong, J. S., Yeh, Y.-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Collins, S. S. E., Cittadini, M., Pecharromán, C., Martucci, A. & Mulvaney, P. Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9, 7846–7856 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Tachikawa, T., Yonezawa, T. & Majima, T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano 7, 263–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ristanović, Z., Kubarev, A. V., Hofkens, J., Roeffaers, M. B. J. & Weckhuysen, B. M. Single molecule nanospectroscopy visualizes proton-transfer processes within a zeolite crystal. J. Am. Chem. Soc. 138, 13586–13596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, X. & Zheng, N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 131, 4602–4603 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Bueno, C. et al. The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and photochemical reactions. Photochem. Photobiol. 76, 385–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Balcerzyk, A. & Baldacchino, G. Implementation of laser induced fluorescence in a pulse radiolysis experiment-a new way to analyze resazurin-like reduction mechanisms. Analyst 139, 1707–1712 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Chang, W. S. et al. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Acc. Chem. Res. 45, 1936–1945 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zaleski, S. et al. Investigating nanoscale electrochemistry with surface- and tip-enhanced raman spectroscopy. Acc. Chem. Res. 49, 2023–2030 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Kang, M. et al. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles. ACS Nano 11, 9525–9535 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, J. G., Chakraborty, I. & Jain, P. K. In situ single-nanoparticle spectroscopy study of bimetallic nanostructure formation. Angew. Chem. Int. Ed. 55, 9979–9983 (2016).

    Article  CAS  Google Scholar 

  25. Xu, W. et al. Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett. 9, 3968–3973 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, S. & Cao, J. Direct measurements of memory effects in single-molecule kinetics. J. Chem. Phys. 117, 10996–11009 (2002).

    Article  CAS  Google Scholar 

  27. Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7, 237–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Andoy, N. M. et al. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135, 1845–1852 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Bian, Z., Tachikawa, T., Kim, W., Choi, W. & Majima, T. Superior electron transport and photocatalytic abilities of metal-nanoparticle-loaded TiO2 superstructures. J. Phys. Chem. C. 116, 25444–25453 (2012).

    Article  CAS  Google Scholar 

  30. Chernyak, L., Osinsky, A., Fuflyigin, V. & Schubert, E. F. Electron beam-induced increase of electron diffusion length in p-type GaN and AlGaN/GaN superlattices. Appl. Phys. Lett. 77, 875–877 (2000).

    Article  CAS  Google Scholar 

  31. Gonzalez-Vazquez, J. P., Anta, J. A. & Bisquert, J. Determination of the electron diffusion length in dye-sensitized solar cells by random walk simulation: compensation effects and voltage dependence. J. Phys. Chem. C. 114, 8552–8558 (2010).

    Article  CAS  Google Scholar 

  32. Utterback, J. K. et al. Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nat. Chem. 8, 1061–1066 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Jennings, J. R. & Peter, L. M. A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells. J. Phys. Chem. C. 111, 16100–16104 (2007).

    Article  CAS  Google Scholar 

  34. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  35. Wang, Z. L., Mohamed, M. B., Link, S. & El-Sayed, M. A. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 440, L809–L814 (1999).

    Article  CAS  Google Scholar 

  36. Johnson, C. J. et al. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 12, 1765–1770 (2002).

    Article  CAS  Google Scholar 

  37. Carbó-Argibay, E. et al. The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. Angew. Chem. Int. Ed. 49, 9397–9400 (2010).

    Article  CAS  Google Scholar 

  38. Katz-Boon, H. et al. Three-dimensional morphology and crystallography of gold nanorods. Nano Lett. 11, 273–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Gai, P. L. & Harmer, M. A. Surface atomic defect structures and growth of gold nanorods. Nano Lett. 2, 771–774 (2002).

    Article  CAS  Google Scholar 

  40. Shankar, S. S. et al. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482–488 (2004).

    Article  CAS  Google Scholar 

  41. Liz-Marzán, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized goca core−shell particles. Langmuir 12, 4329–4335 (1996).

    Article  Google Scholar 

  42. Botella, P., Corma, A. & Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 19, 1979–1983 (2007).

    Article  CAS  Google Scholar 

  43. Han, K. S., Liu, G., Zhou, X., Medina, R. E. & Chen, P. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Lett. 12, 1253–1259 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Miranda, K. M., Espey, M. G. & Wink, D. A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y. et al. Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity. Proc. Natl Acad. Sci. USA 112, 8959–8964 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Han, R. et al. Geometry-assisted three-dimensional superlocalization imaging of single-molecule catalysis on modular multilayer nanocatalysts. Angew. Chem. Int. Ed. 53, 12865–12869 (2014).

    Article  CAS  Google Scholar 

  47. Easter, Q. T. & Blum, S. A. Single turnover at molecular polymerization catalysts reveals spatiotemporally resolved reactions. Angew. Chem. Int. Ed. 56, 13772–13775 (2017).

    Article  CAS  Google Scholar 

  48. Ng, J. D. et al. Single-molecule investigation of initiation dynamics of an organometallic catalyst. J. Am. Chem. Soc. 138, 3876–3883 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hodgson, G. K., Impellizzeri, S. & Scaiano, J. C. Dye synthesis in the pechmann reaction: catalytic behaviour of samarium oxide nanoparticles studied using single molecule fluorescence microscopy. Chem. Sci. 7, 1314–1321 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported mainly by the Army Research Office grants W911NF-17–1–0590 and W911NF-14–1–0377; and in part by the Army Research Office grant W911NF-14–1–0620; the Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program (grant DE-SC0004911); and National Science Foundation (grant CBET-1263736). Part of the work was carried out at the Cornell Center for Materials Research (grant DMR-1719875) and the Cornell NanoScale Facility (grant ECS-1542081). We thank J. B. Sambur and R. F. Loring for discussions.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. performed the experiments on Au nanorods catalysing the deacetylation and deoxygenation reactions, analysed the intra-particle and inter-particle catalytic communication behaviours, and performed simulations. X.Z. performed the early experiments, analyses, and simulations on the catalytic communications of Au nanorods catalysing the deacetylation reaction. G.C. performed experiments and analysis of Pd nanorods catalysing the disproportionation reaction. N.M.A. performed experiments and analysis of Au nanoplates catalysing the deoxygenation reaction. W.J. derived the diffusive model for analysing the intraparticle catalytic communication as a function of both distance and time separations. G.L. performed part of the electron microscopy measurements. P.C. conceived and directed the research. N.Z., X.Z., G.C. and P.C. discussed results and wrote the paper.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Data, Supplementary Analysis, Supplementary Discussion, Supplementary Figs. 1–29, and Supplementary Tables 1,2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, N., Zhou, X., Chen, G. et al. Cooperative communication within and between single nanocatalysts. Nature Chem 10, 607–614 (2018). https://doi.org/10.1038/s41557-018-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0022-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing