An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes

Abstract

Magnesium-based batteries possess potential advantages over their lithium counterparts. However, reversible Mg chemistry requires a thermodynamically stable electrolyte at low potential, which is usually achieved with corrosive components and at the expense of stability against oxidation. In lithium-ion batteries the conflict between the cathodic and anodic stabilities of the electrolytes is resolved by forming an anode interphase that shields the electrolyte from being reduced. This strategy cannot be applied to Mg batteries because divalent Mg2+ cannot penetrate such interphases. Here, we engineer an artificial Mg2+-conductive interphase on the Mg anode surface, which successfully decouples the anodic and cathodic requirements for electrolytes and demonstrate highly reversible Mg chemistry in oxidation-resistant electrolytes. The artificial interphase enables the reversible cycling of a Mg/V2O5 full-cell in the water-containing, carbonate-based electrolyte. This approach provides a new avenue not only for Mg but also for other multivalent-cation batteries facing the same problems, taking a step towards their use in energy-storage applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: TEM imaging and EDS mapping of the artificial Mg2+-conducting interphase.
Fig. 2: XPS analysis of Mg2+-conducting film.
Fig. 3: Voltage responses of symmetric Mg cells under repeated polarization with and without artificial interphase in different electrolyte systems at a current density of 0.01 mA cm−2.
Fig. 4: TOF-SIMS and TGA analysis of Mg2+-conducting interphase.
Fig. 5: Conductivity measurement of Mg2+-conducting interphase on Mg surface and XPS depth profiles.
Fig. 6: Electrochemical performance of the Mg/V2O5 full cell.

References

  1. 1.

    Mohtadi, R. & Mizuno, F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein. J. Nanotechnol. 5, 1291–1311 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Muldoon, J., Bucur, C. B. & Gregory, T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014).

    PubMed  Google Scholar 

  3. 3.

    Aurbach, D., Weissman, I., Gofer, Y. & Levi, E. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003).

    CAS  PubMed  Google Scholar 

  4. 4.

    Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  PubMed  Google Scholar 

  5. 5.

    Song, J., Sahadeo, E., Noked, M. & Lee, S. B. Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 7, 1736–1749 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 196, 7048–7055 (2011).

    CAS  Google Scholar 

  7. 7.

    Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    CAS  Google Scholar 

  8. 8.

    Aubrey, M. L., Ameloot, R., Wiers, B. M. & Long, J. R. Metal–organic frameworks as solid magnesium electrolytes. Energ. Environ. Sci. 7, 667–671 (2014).

    CAS  Google Scholar 

  9. 9.

    Higashi, S., Miwa, K., Aoki, M. & Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 50, 1320–1322 (2014).

    CAS  Google Scholar 

  10. 10.

    Pandey, G. P., Agrawal, R. C. & Hashmi, S. A. Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J. Solid State Electr. 15, 2253–2264 (2011).

    CAS  Google Scholar 

  11. 11.

    Lu, Z., Schechter, A., Moshkovich, M. & Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203–217 (1999).

    CAS  Google Scholar 

  12. 12.

    Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energ. Environ. Sci. 6, 2265–2279 (2013).

    CAS  Google Scholar 

  13. 13.

    Muldoon, J. et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energ. Environ. Sci. 5, 5941–5950 (2012).

    CAS  Google Scholar 

  14. 14.

    Liebenow, C., Yang, Z. & Lobitz, P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochem. Commun. 2, 641–645 (2000).

    CAS  Google Scholar 

  15. 15.

    Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S.-J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780–9783 (2012).

    CAS  Google Scholar 

  16. 16.

    Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).

    CAS  Google Scholar 

  17. 17.

    Connor, J. H., Reid, W. E. & Wood, G. B. Electrodeposition of metals from organic solutions. V. Electrodeposition of magnesium and magnesium alloys. J. Electrochem. Soc. 104, 38–41 (1957).

    CAS  Google Scholar 

  18. 18.

    Aurbach, D., Moshkovich, M., Schechter, A. & Turgeman, R. Magnesium deposition and dissolution processes in ethereal grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy. Electrochem. Solid. St. 3, 31–34 (2000).

    CAS  Google Scholar 

  19. 19.

    Aurbach, D. et al. Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260–4267 (2007).

    CAS  Google Scholar 

  20. 20.

    Chusid, O. et al. Solid-state rechargeable magnesium batteries. Adv. Mater. 15, 627–630 (2003).

    CAS  Google Scholar 

  21. 21.

    Ha, S.-Y. et al. Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interf. 6, 4063–4073 (2014).

    CAS  Google Scholar 

  22. 22.

    Gautam, G. S., Canepa, P., Richards, W. D., Malik, R. & Ceder, G. Role of structural H2O in intercalation electrodes: the case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 16, 2426–2431 (2016).

    Google Scholar 

  23. 23.

    Yu, L. & Zhang, X. G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J. Colloid Interface Sci. 278, 160–165 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Rahaman, M. S. A., Ismail, A. F. & Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 92, 1421–1432 (2007).

    CAS  Google Scholar 

  25. 25.

    Piper, D. M. et al. Conformal coatings of cyclized-PAN for mechanically resilient si nano-composite anodes. Adv. Energy Mater. 3, 697–702 (2013).

    CAS  Google Scholar 

  26. 26.

    Son, S. B. et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 4, 1300961 (2014).

    Google Scholar 

  27. 27.

    Pamula, E. & Rouxhet, P. G. Bulk and surface chemical functionalities of type IIIPAN-based carbon fibres. Carbon 41, 1905–1915 (2003).

    CAS  Google Scholar 

  28. 28.

    Wang, Z. X., Huang, B. Y., Xue, R. J., Huang, X. J. & Chen, L. Q. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ion. 121, 141–156 (1999).

    CAS  Google Scholar 

  29. 29.

    Bredas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5003 (2004).

    CAS  PubMed  Google Scholar 

  30. 30.

    Borodin, O., Zhuang, G. R. V., Ross, P. N. & Xu, K. Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J. Phys. Chem. C. 117, 7433–7444 (2013).

    CAS  Google Scholar 

  31. 31.

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    CAS  PubMed  Google Scholar 

  32. 32.

    Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).

    CAS  Google Scholar 

  33. 33.

    Shiga, T., Kato, Y., Inoue, M., Takahashi, N. & Hase, Y. Anode material associated with polymeric networking of triflate ions formed on Mg. J. Phys. Chem. C 119, 3488–3494 (2015).

    CAS  Google Scholar 

  34. 34.

    Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Dlubek, G., Brummer, O., Meyendorf, N., Dekhtyar, I. Y. & Fedchenko, R. G. Positron-annihilation studies on correction of structural crystal defects in plastically deformed PDFE alloys. Phys. Status Solidi A 42, K15–K18 (1977).

    CAS  Google Scholar 

  36. 36.

    Amin, R., Balaya, P. & Maier, J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem. Solid St. 10, A13–A16 (2007).

    CAS  Google Scholar 

  37. 37.

    Gershinsky, G., Yoo, H. D., Gofer, Y. & Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964–10972 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhou, B., Shi, H., Cao, R. F., Zhang, X. D. & Jiang, Z. Y. Theoretical study on the initial stage of a magnesium battery based on a V2O5 cathode. Phys. Chem. Chem. Phys. 16, 18578–18585 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Leger, C., Bach, S., Soudan, P. & Pereira-Ramos, J.-P. Structural and electrochemical properties of ωLixV2O5 ( 0.4 x 3) as rechargeable cathodic material for lithium batteries. J. Electrochem. Soc. 152, A236–A241 (2005).

    CAS  Google Scholar 

  40. 40.

    Yue, Y. & Liang, H. Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv. Energy Mater. 7, 1602545 (2017).

    Google Scholar 

  41. 41.

    Novák, P. & Desilvestro, J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 140, 140–144 (1993).

    Google Scholar 

  42. 42.

    Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Sa, N. Y. et al. Is alpha-V2O5 a cathode material for Mg insertion batteries? J. Power Sources 323, 44–50 (2016).

    CAS  Google Scholar 

  44. 44.

    Lim, S.-C. et al. Unraveling the magnesium-ion intercalation mechanism in vanadium pentoxide in a wet organic electrolyte by structural determination. Inorg. Chem. 56, 7668–7678 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Novák, P., Scheifele, W., Joho, F. & Haas, O. Electrochemical insertion of magnesium into hydrated vanadium bronzes. J. Electrochem. Soc. 142, 2544–2550 (1995).

    Google Scholar 

  46. 46.

    Novak, P., Imhof, R. & Haas, O. Magnesium insertion electrodes for rechargeable nonaqueous batteries: a competitive alternative to lithium? Electrochim. Acta 45, 351–367 (1999).

    CAS  Google Scholar 

  47. 47.

    Glushenkov, A. M. et al. Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J. Solid State Electr. 14, 1841–1846 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development (LDRD) programme at the National Renewable Energy Laboratory (NREL). The authors greatly appreciate the constructive suggestions from H. Guthrey and D. H. Kim at NREL. The Alliance for Sustainable Energy, LLC (Alliance), is the manager and operator of NREL. Employees of the Alliance, under contract no. DE-AC36-08GO28308 with the US Department of Energy, authored this work.

Author information

Affiliations

Authors

Contributions

S.-B.S. and C.B. developed the protocol for fabricating the Mg2+-conducting interphase on Mg electrodes and performed electrochemical testing. C.B. supervised the work. K.X. synthesized APC electrolyte. T.G and C.W. contributed to the conductivity measurements. S.H. measured and analysed TOF-SIMS spectra of the Mg electrode. K.S. and A.C. measured and analysed XPS spectra of the Mg electrode. A.N. and A.S. performed FIB and STEM-EDS analysis. S.-B.S., C.B., K.X. and C.W. prepared the manuscript.

Corresponding author

Correspondence to Chunmei Ban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data and characterization, Supplementary Figs. 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Son, S., Gao, T., Harvey, S.P. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nature Chem 10, 532–539 (2018). https://doi.org/10.1038/s41557-018-0019-6

Download citation

Further reading