Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

Abstract

In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody–antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, synthesis, encoding and selection of the multiple display DNA-encoded chemical library.
Fig. 2: Selection fingerprints from the multiple display DNA-encoded chemical library.
Fig. 3: Binder validation of selected combinations against HSA, AGP, CaM, PSA, L19-TNF and TNF.
Fig. 4: Immunofluoresence performance of selected PSA binder and in vivo performance of CAIX binder.
Fig. 5: Performance of a chemical probe developed from selected CaM binder.

Similar content being viewed by others

References

  1. Murphy, K., Janeway, C. A. & Mowat, A. Janeway’s Immunobiology 8th edn (Garland Science, New York, 2012).

  2. Smith, G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Clackson, T., Hoogenboom, H. R., Griffiths, A. D. & Winter, G. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Lerner, R. A., Kang, A. S., Bain, J. D., Burton, D. R. & Barbas, C. F. III Antibodies without immunization. Science 258, 1313–1314 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, D. S., Keefe, A. D. & Szostak, J. W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kawakami, T. et al. Diverse backbone-cyclized peptides via codon reprogramming. Nat. Chem. Biol. 5, 888–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  Google Scholar 

  11. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Goodnow, R. A. Jr, Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Lerner, R. A. & Brenner, S. DNA-encoded compound libraries as open source: a powerful pathway to new drugs. Angew. Chem. Int. Ed. 56, 1164–1165 (2017).

    Article  CAS  Google Scholar 

  14. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Needels, M. C. et al. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl Acad. Sci. USA 90, 10700–10704 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl. Acad. Sci. USA 105, 17670–17675 (2008).

    Article  PubMed  Google Scholar 

  17. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Litovchick, A. et al. Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci. Rep. 5, 10916 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Franzini, R. M. & Randolph, C. Chemical space of DNA-encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Halpin, D. R. & Harbury, P. B. DNA display I. Sequence-encoded routing of DNA populations. PLoS Biol. 2, e173 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansen, M. H. et al. A yoctoliter-scale DNA reactor for small-molecule evolution. J. Am. Chem. Soc. 131, 1322–1327 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Zhao, P., Zhang, M., Zhao, X. & Li, X. Multistep DNA-templated synthesis using a universal template. J. Am. Chem. Soc. 135, 17727–17730 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Reddavide, F. V., Lin, W., Lehnert, S. & Zhang, Y. DNA-encoded dynamic combinatorial chemical libraries. Angew. Chem. Int. Ed. 54, 7924–7928 (2015).

    Article  CAS  Google Scholar 

  26. Li, G. et al. Design, preparation, and selection of DNA-encoded dynamic libraries. Chem. Sci. 6, 7097–7104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daguer, J. P. et al. DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules. Chem. Sci. 6, 739–744 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Deng, H. et al. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). J. Med. Chem. 55, 7061–7079 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Barluenga, S. et al. Novel PTP1B inhibitors identified by DNA display of fragment pairs. Bioorg. Med. Chem. Lett. 26, 1080–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Maianti, J. P. et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 511, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mutter, M., Hersperger, R., Gubernator, K. & Muller, K. The construction of new proteins. V. A template-assembled synthetic protein (TASP) containing both a 4-helix bundle and beta-barrel-like structure. Proteins 5, 13–21 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Dumy, P., Eggleston, I. M., Esposito, G., Nicula, S. & Mutter, M. Solution structure of regioselectively addressable functionalized templates: an NMR and restrained molecular dynamics investigation. Biopolymers 39, 297–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Peluso, S. et al. Crystal structure of a synthetic cyclodecapeptide for template-assembled synthetic protein design. ChemBioChem 2, 432–437 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Salamon, H., Klika Škopić, M., Jung, K., Bugain, O. & Brunschweiger, A. Chemical biology probes from advanced DNA-encoded libraries. ACS Chem. Biol. 11, 296–307 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Franzini, R. M. et al. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries. Bioconjug. Chem. 25, 1453–1461 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. Optimized reaction conditions for amide bond formation in DNA-encoded combinatorial libraries. ACS Comb. Sci. 18, 438–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Decurtins, W. et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat. Protoc. 11, 764–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krall, N. et al. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew. Chem. Int. Ed. 53, 4231–4235 (2014).

    Article  CAS  Google Scholar 

  39. Gilabert, M. A. A. et al. Differential substrate behaviour of phenol and aniline derivatives during oxidation by horseradish peroxidase: kinetic evidence for a two-step mechanism. Biochim. Biophys. Acta 1699, 235–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Franzini, R. M. et al. Identification of structure–activity relationships from screening a structurally compact DNA-encoded chemical library. Angew. Chem. Int. Ed. 54, 3927–3931 (2015).

    Article  CAS  Google Scholar 

  41. Malone, M. L. & Paegel, B. M. What is a ‘DNA-compatible’ reaction? ACS Comb. Sci. 18, (182–187 (2016).

    Google Scholar 

  42. Deng, H. et al. Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library. ACS Med. Chem. Lett. 6, 919–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satz, A. L. Simulated screens of DNA encoded libraries: the potential influence of chemical synthesis fidelity on interpretation of structure–activity relationships. ACS Comb. Sci. 18, 415–424 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Griffiths, A. D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  Google Scholar 

  45. Nissim, A. et al. Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J. 13, 692–698 (1994).

    Article  CAS  Google Scholar 

  46. Vaughan, T. J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Gram, H. et al. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89, 3576–3580 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Jespers, L. S., Roberts, A., Mahler, S. M., Winter, G. & Hoogenboom, H. R. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 12, 899–903 (1994).

    CAS  PubMed  Google Scholar 

  49. Pini, A. et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21769–21776 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Fellouse, F. A., Wiesmann, C. & Sidhu, S. S. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc. Natl. Acad. Sci. USA 101, 12467–12472 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Li, B. et al. Minimization of a polypeptide hormone. Science 270, 1657–1660 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Zürich, the Swiss National Science Foundation (310030B_163479/1 grant, 31003A_144242 grant and CRSII2_160699/1 Sinergia grant), the ERC Advanced Grant ‘Zauberkugel’ (Grant agreement 670603), Philochem AG and through Start-up Funding for the ‘Hundred Young-Talent Scheme’ Professorship provided by Chongqing University in China (0247001104406). The authors thank G. Annuziato for help with synthesis, C. Aquino and L. Optiz for help with high-throughput DNA sequencing, and M. Wichert, R. Franzini, G. Zimmerman, A. Dal Corso, W. Decurtins, A. Schmid, L. Sun, M. Xi and J. Zhang for discussions. Instant JChem (ChemAxon) was used for structure and data management (http://www.chemaxon.com).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., J.S. and D.N. designed the project. Y.L. constructed the library. R.D.L. provided target proteins. Y.L. designed and performed the selections. Y.L. and J.S. analysed high-throughput DNA screening data. Y.L. performed synthesis and hit validation experiments and performed the photo-crosslinking experiments. Y.L. and F.P. performed the immunofluorescence experiments. Y.L. and S.C. performed in vivo experiments. D.B. performed the biotinylation of target proteins. Y.L., J.S. and D.N. wrote the manuscript.

Corresponding authors

Correspondence to Jörg Scheuermann or Dario Neri.

Ethics declarations

Competing interests

D.N. is a co-founder and shareholder of Philochem AG (Otelfingen, Switerland) and J.S. is a board member of Philochem AG.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Data, and Supplementary Figures 1–77

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., De Luca, R., Cazzamalli, S. et al. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nature Chem 10, 441–448 (2018). https://doi.org/10.1038/s41557-018-0017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0017-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing