Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

O2−O2 and O2−N2 collision-induced absorption mechanisms unravelled

A Publisher Correction to this article was published on 13 April 2018

This article has been updated

Abstract

Collision-induced absorption is the phenomenon in which interactions between colliding molecules lead to absorption of light, even for transitions that are forbidden for the isolated molecules. Collision-induced absorption contributes to the atmospheric heat balance and is important for the electronic excitations of O2 that are used for remote sensing. Here, we present a theoretical study of five vibronic transitions in O2−O2 and O2−N2, using analytical models and numerical quantum scattering calculations. We unambiguously identify the underlying absorption mechanism, which is shown to depend explicitly on the collision partner—contrary to textbook knowledge. This explains experimentally observed qualitative differences between O2−O2 and O2−N2 collisions in the overall intensity, line shape and vibrational dependence of the absorption spectrum. It is shown that these results can be used to discriminate between conflicting experimental data and even to identify unphysical results, thus impacting future experimental studies and atmospheric applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental and theoretical collision-induced absorption spectra for the \({X}^{3}{\Sigma }_{g}^{-}(v^{\prime\prime} =0)\to {a}^{1}{\Delta }_{g}(v^{\prime} )\) bands of O2−O2 and O2−N2.
Fig. 2: Experimental and theoretical collision-induced absorption spectra for the \({X}^{3}{{\rm{\Sigma }}}_{g}^{-}(v^{\prime\prime} =0)\to {b}^{1}{{\rm{\Sigma }}}_{g}^{+}(v^{\prime} )\) bands of O2−O2 and O2−N2.
Fig. 3: Translational profiles for the \({X}^{3}{\Sigma }_{g}^{-}\to {a}^{1}{{\rm{\Delta }}}_{g}\) transition for both exchange and spin–orbit mechanisms.
Fig. 4: Collision-induced absorption spectra for the \({X}^{3}{{\rm{\Sigma }}}_{g}^{-}(v^{\prime\prime} =0)\to {b}^{1}{{\rm{\Sigma }}}_{g}^{+}(v^{\prime} =0)\) band in air, normalized to the product of O2 and air number densities.
Fig. 5: Collision-induced absorption spectra for the \({X}^{3}{\Sigma }_{g}^{-}\to {a}^{1}{\Delta }_{g}\) and \({b}^{1}{{\rm{\Sigma }}}_{g}^{+}\) transitions in O2−O2 and experimental results.

Change history

  • 13 April 2018

    In the version of this Article originally published, Figures 3 and 4 were erroneously swapped, this has been corrected in all versions of the Article.

References

  1. 1.

    Frommhold, L. Collision-Induced Absorption in Gases (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  2. 2.

    Crawford, M. F., Welsh, H. L. & Locke, J. L. Infra-red absorption of oxygen and nitrogen induced by intermolecular forces. Phys. Rev. 75, 1607–1607 (1949).

    CAS  Google Scholar 

  3. 3.

    Smith, K. M. & Newnham, D. A. Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O2, O2–O2, and O2–N2). J. Geophys. Res. Atmos. 105, 7383–7396 (2000).

    CAS  Google Scholar 

  4. 4.

    Maté, B., Lugez, C., Fraser, G. T. & Lafferty, W. J. Absolute intensities for the O2 1.27 μm continuum absorption. J. Geophys. Res. Atmos. 104, 30585–30590 (1999).

    Google Scholar 

  5. 5.

    Long, D. A., Robichaud, D. J. & Hodges, J. T. Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band. J. Chem. Phys. 137, 014307 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Spiering, F. R. et al. Line mixing and collision induced absorption in the oxygen A-band using cavity ring-down spectroscopy. J. Chem. Phys. 133, 114305 (2010).

    PubMed  Google Scholar 

  7. 7.

    Spiering, F. R., Kiseleva, M. B., Filippov, N. N., van Kesteren, L. & van der Zande, W. J. Collision-induced absorption in the O2 B-band region near 670 nm. Phys. Chem. Chem. Phys. 13, 9616–9621 (2011).

    CAS  PubMed  Google Scholar 

  8. 8.

    Spiering, F. R. et al. The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy. Mol. Phys. 109, 535–542 (2011).

    CAS  Google Scholar 

  9. 9.

    Spiering, F. R. & van der Zande, W. J. Collision induced absorption in the a 1Δ(v = 2) ← X3 \({}^{{{\rm{\Sigma }}}_{g}^{-}}\) (v = 0) band of molecular oxygen. Phys. Chem. Chem. Phys. 14, 9923–9928 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Sneep, M. & Ubachs, W. Cavity ring-down measurement of the O2–O2 collision-induced absorption resonance at 477 nm at sub-atmospheric pressures. J. Quant. Spectrosc. Radiat. Transf. 78, 171–178 (2003).

    CAS  Google Scholar 

  11. 11.

    Sneep, M. & Ubachs, W. in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere Vol. 27 (eds Camy-Peret, C. & Vigasin, A.) 203–211 (NATO Science Series: IV: Earth and Environmental Sciences, Springer, 2003).

  12. 12.

    Tran, H., Boulet, C. & Hartmann, J.-M. Line mixing and collision-induced absorption by oxygen in the A-band: laboratory measurements, model, and tools for atmospheric spectra computations. J. Geophys. Res. 111, D15210 (2006).

    Google Scholar 

  13. 13.

    Vangvichith, M., Tran, H. & Hartmann, J.-M. Line-mixing and collision induced absorption for O2CO2 mixtures in the oxygen A-band region. J. Quant. Spectrosc. Radiat. Transf. 110, 2212–2216 (2009).

    CAS  Google Scholar 

  14. 14.

    Höpfner, M., Milz, M., Buehler, S., Orphal, J. & Stiller, G. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2). Geophys. Res. Lett. 39, L10706 (2012).

    Google Scholar 

  15. 15.

    Eldering, A. et al. High precision atmospheric CO2 measurements from space: the design and implementation of OCO-2. In Proc. 2012 IEEE Aerospace Conference 1–10 (IEEE, 2012).

  16. 16.

    Miller, C. E. et al. Precision requirements for space-based data. J. Geophys. Res. Atmos. 112, D10314 (2007).

    Google Scholar 

  17. 17.

    Kuang, Z., Margolis, J. S., Toon, G. C., Crisp, D. & Yung, Y. L. Spaceborne measurements of atmospheric CO2 by high-resolution nir spectrometry of reflected sunlight: an introductory study. Geophys. Res. Lett. 29, 1716 (2002).

  18. 18.

    O’Brien, D. M., Mitchell, R. M., English, S. A. & Costa, G. A. D. Airborne measurements of air mass from O2 A-band absorption spectra. J. Atmos. Ocean. Technol. 15, 1272–1286 (1998).

    Google Scholar 

  19. 19.

    Diedenhoven, Bv, Hasekamp, O. P. & Aben, I. Surface pressure retrieval from SCIAMACHY measurements in the O2 A-band: validation of the measurements and sensitivity on aerosols. Atmos. Chem. Phys. 5, 2109–2120 (2005).

    Google Scholar 

  20. 20.

    Wunch, D. et al. The total carbon column observing network. Philos. Trans. R. Soc. A 369, 2087–2112 (2011).

    CAS  Google Scholar 

  21. 21.

    Misra, A., Meadows, V., Claire, M. & Crisp, D. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14, 67–86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gallagher, A. & Holstein, T. Collision-induced absorption in atomic electronic transitions. Phys. Rev. A. 16, 2413 (1977).

    CAS  Google Scholar 

  23. 23.

    Julienne, P. S. Non-adiabatic theory of collision-broadened atomic line profiles. Phys. Rev. A. 26, 3299–3317 (1982).

    CAS  Google Scholar 

  24. 24.

    Robinson, G. W. Intensity enhancement of forbidden electronic transitions by weak intermolecular interactions. J. Chem. Phys. 46, 572 (1967).

    CAS  Google Scholar 

  25. 25.

    Minaev, B. Intensities of spin-forbidden transitions in molecular oxygen and selective heavy-atom effects. Int. J. Quantum Chem. 17, 367–374 (1980).

    CAS  Google Scholar 

  26. 26.

    Minaev, B. F. & Ågren, H. Collision-induced b 1- \({}^{{{\rm{\Sigma }}}_{g}^{-}}\) a 1Δg, b 1 \({}^{{{\rm{\Sigma }}}_{g}^{+}}\)-X3 \({{\rm{\Sigma }}}_{g}^{-}\) and a 1Δg-X3 \({{\rm{\Sigma }}}_{g}^{-}\) transition probabilities in molecular oxygen. J. Chem. Soc. Faraday Trans. 93, 2231–2239 (1997).

    CAS  Google Scholar 

  27. 27.

    Minaev, B. F. & Kobzev, G. I. Response calculations of electronic and vibrational transitions in molecular oxygen induced by interaction with noble gases. Spectrochim. Acta A 59, 3387–3410 (2003).

    Google Scholar 

  28. 28.

    Minaev, B. F. Electronic mechanisms of molecular oxygen activation. Russ. Chem. Rev. 76, 988–1010 (2007).

    Google Scholar 

  29. 29.

    Long, C. & Kearns, D. R. Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen. J. Chem. Phys. 59, 5729 (1973).

    CAS  Google Scholar 

  30. 30.

    Hidemori, T., Akai, N., Kawai, A. & Shibuya, K. Intensity enhancement of weak O2a 1ΔgX 3 emission at 1270 nm by collisions with foreign gases. J. Phys. Chem. A 116, 2032 (2012).

    CAS  PubMed  Google Scholar 

  31. 31.

    Janssen, J. Analyse spectrale des éléments de l’atmosphère terrestre. C. R. Acad. Sci. 101, 649–651 (1885).

    Google Scholar 

  32. 32.

    Janssen, J. Sur les spectres d’absorption de l’oxygène. C. R. Acad. Sci. 102, 1352 (1886).

    Google Scholar 

  33. 33.

    Tabisz, G. C., Allin, E. J. & Welsh, H. L. Interpretation of the visible and near-infrared absorption spectra of compressed oxygen as collision-induced electronic transitions. Can. J. Phys. 47, 2859–2871 (1969).

    CAS  Google Scholar 

  34. 34.

    Greenblatt, G. D., Orlando, J. J., Burkhoder, J. B. & Ravishankara, A. R. Absorption measurements of oxygen between 330 and 1140 nm. J. Geophys. Res. 95, 18577–18582 (1990).

    CAS  Google Scholar 

  35. 35.

    Sneep, M., Ityaksov, D., Aben, I., Linnartz, H. & Ubachs, W. Temperature-dependent cross sections of O2–O2 collision-induced absorption resonances at 477 and 577 nm. J. Quant. Spectrosc. Radiat. Transf. 98, 405–424 (2006).

    CAS  Google Scholar 

  36. 36.

    Thalman, R. & Volkamer, R. Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Phys. Chem. Chem. Phys. 15, 15371–15381 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    Karman, T., van der Avoird, A. & Groenenboom, G. C. Potential energy and dipole moment surfaces of the triplet states of the O2(X 3 \({}^{{{\rm{\Sigma }}}_{g}^{-}}\))−O2(X 3 \({{\rm{\Sigma }}}_{g}^{-}\), a 1Δg, b 1 \({{\rm{\Sigma }}}_{g}^{+}\)) complex. J. Chem. Phys. 147, 084306 (2017).

    PubMed  Google Scholar 

  38. 38.

    Karman, T., van der Avoird, A. & Groenenboom, G. C. Communication: multiple-property-based diabatization for open-shell van der Waals molecules. J. Chem. Phys. 144, 121101 (2016).

    PubMed  Google Scholar 

  39. 39.

    Zagidullin, M. V., Pershin, A. A., Azyazov, V. N. & Mebel, A. M. Luminescence of the (O2(a 1Δg))2 collisional complex in the temperature range of 90–315 K: experiment and theory. J. Chem. Phys. 143, 244315 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Karman, T., van der Avoird, A. & Groenenboom, G. C. Line-shape theory of the X 3 \({}^{{{\rm{\Sigma }}}_{g}^{-}}\)a 1Δg, b 1 \({{\rm{\Sigma }}}_{g}^{+}\) transitions in O2–O2 collision-induced absorption. J. Chem. Phys. 147, 084307 (2017).

    PubMed  Google Scholar 

  41. 41.

    Richard, C. et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012).

    CAS  Google Scholar 

  42. 42.

    Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    CAS  Google Scholar 

  43. 43.

    Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W. The NIST Handbook of Mathematical Functions (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  44. 44.

    Nichols, R. Franck–Condon factors to high vibrational quantum numbers V: O2 band systems. J. Res. Nat. Bur. Stand. A 69A, 369–373 (1965).

    Google Scholar 

  45. 45.

    Drouin, B. J. et al. Multispectrum analysis of the oxygen A-band. J. Quant. Spectrosc. Radiat. Transf. 186, 118–138 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Karman, T., Miliordos, E., Hunt, K. L. C., Groenenboom, G. C. & van der Avoird, A. Quantum mechanical calculation of the collision-induced absorption spectra of N2–N2 with anisotropic interactions. J. Chem. Phys. 142, 084306 (2015).

    PubMed  Google Scholar 

  47. 47.

    Buryak, I., Lokshtanov, S. & Vigasin, A. CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions. J. Chem. Phys. 137, 114308 (2012).

    PubMed  Google Scholar 

  48. 48.

    Moraldi, M. & Frommhold, L. Collision-induced infrared absorption by H2–He complexes: accounting for the anisotropy of the interaction. Phys. Rev. A 52, 274 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Netherlands Organisation for Scientific Research (NWO; grant 022.003.048). T.K. acknowledges additional support by the EU COST Action MOLIM (CM1405) and a pre-doctoral fellowship of the Smithsonian Astrophysical Observatory. A.B. and D.H.P. acknowledge EU H2020 ITN-EID project ‘PUFF’ (grant no. 642820) for support. I.E.G. is supported by NASA AURA program grant NNX14AI55G.

Author information

Affiliations

Authors

Contributions

The theory was developed by T.K., A.v.d.A. and G.C.G. Cavity ring-down experiments were performed M.A.J.K., A.B., D.H.P. and W.J.v.d.Z. I.E.G. contributed to the comparison between experiment and theory.

Corresponding author

Correspondence to Gerrit C. Groenenboom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Tables 1–3, Supplementary calculations, modelling, methods and analysis

Supplementary Data Set 1

Experimental results for the a1Δg(v′=1) band for O2–N2 and O2–O2

Supplementary Data Set 2

Theoretical collision-induced absorption spectra for O2-N2

Supplementary Data Set 3

Theoretical collision-induced absorption spectra for O2-O2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karman, T., Koenis, M.A.J., Banerjee, A. et al. O2−O2 and O2−N2 collision-induced absorption mechanisms unravelled. Nature Chem 10, 549–554 (2018). https://doi.org/10.1038/s41557-018-0015-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing