Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental and computational evidence of halogen bonds involving astatine

Abstract

The importance of halogen bonds—highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base—is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor—a stronger one than iodine—owing to its much more electrophilic σ-hole.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Side view of the molecular electrostatic potential for AtI calculated at the B3LYP/AVDZ level of theory.
Fig. 2: Distribution of astatine species between the organic and aqueous phases in the presence of (BuO)3PO.
Fig. 3: Distribution of astatine species between the organic and aqueous phases in the presence of Et2S.
Fig. 4: Relationship between XB equilibrium constants.
Fig. 5: Compared evolutions of experimental and computational KBAtI values for six XB acceptors.

Similar content being viewed by others

References

  1. Bent, H. A. Structural chemistry of donor–acceptor interactions. Chem. Rev. 68, 587–648 (1968).

    Article  CAS  Google Scholar 

  2. Desiraju, G. R. & Harlow, R. L. Cyano–halogen interactions and their role in the crystal structures of the 4-halobenzonitriles. J. Am. Chem. Soc. 111, 6757–6764 (1989).

    Article  CAS  Google Scholar 

  3. Amico, V., Meille, S. V., Corradi, E., Messina, M. T. & Resnati, G. Perfluorocarbon−hydrocarbon self-assembling. 1D infinite chain formation driven by nitrogen···iodine interactions. J. Am. Chem. Soc. 120, 8261–8262 (1998).

    Article  CAS  Google Scholar 

  4. Legon, A. C. π-Electron ‘donor–acceptor’ complexes BClF and the existence of the ‘chlorine bond’. Chem. Eur. J. 4, 1890–1897 (1998).

    Article  CAS  Google Scholar 

  5. Valerio, G., Raos, G., Meille, S. V., Metrangolo, P. & Resnati, G. Halogen bonding in fluoroalkylhalides: a quantum chemical study of increasing fluorine substitution. J. Phys. Chem. A 104, 1617–1620 (2000).

    Article  CAS  Google Scholar 

  6. Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, B., Zang, S. Q., Wang, L. Y. & Mak, T. C. W. Halogen bonding: a powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coord. Chem. Rev. 308, 1–21 (2016).

    Article  CAS  Google Scholar 

  8. Berger, G., Soubhye, J. & Meyer, F. Halogen bonding in polymer science from crystal engineering to functional supramolecular polymers and materials. Polym. Chem. 6, 3559–3580 (2015).

    Article  CAS  Google Scholar 

  9. Mukherjee, A., Tothadi, S. & Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 47, 2514–2524 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Breugst, M., Von Der Heiden, D. & Schmauck, J. Novel noncovalent interactions in catalysis: a focus on halogen, chalcogen, and anion-π bonding. Synthesis 49, 3224–3236 (2017).

    Article  CAS  Google Scholar 

  11. Nagorny, P. & Sun, Z. New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation. Beilstein J. Org. Chem. 12, 2834–2848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bulfield, D. & Huber, S. M. Halogen bonding in organic synthesis and organocatalysis. Chem. Eur. J. 22, 14434–14450 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56, 1363–1388 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Beale, T. M., Chudzinski, M. G., Sarwar, M. G. & Taylor, M. S. Halogen bonding in solution: thermodynamics and applications. Chem. Soc. Rev. 42, 1667–1680 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Metrangolo, P. & Resnati, G. Halogen Bonding I (Springer, Berlin, 2015).

  16. Metrangolo, P. & Resnati, G. Halogen Bonding II (Springer, Berlin, 2015).

  17. Desiraju, G. R. et al. Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl. Chem. 85, 1711–1713 (2013).

    Article  CAS  Google Scholar 

  18. Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. Halogen bonding: the σ-hole. J. Mol. Model. 13, 291–296 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Laurence, C., Graton, J., Berthelot, M. & El Ghomari, M. J. The diiodine basicity scale: toward a general halogen-bond basicity scale. Chem. Eur. J. 17, 10431–10444 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Wilbur, D. S. Enigmatic astatine. Nat. Chem. 5, 246–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Vaidyanathan, G. & Zalutsky, M. R. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr. Radiopharm. 4, 283–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaidyanathan, G. & Zalutsky, M. R. Astatine radiopharmaceuticals: prospects and problems. Curr. Radiopharm. 1, 177–196 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guérard, F., Gestin, J.-F. & Brechbiel, M. W. Production of [211At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy. Cancer Biother. Radiopharm. 28, 1–20 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zalutsky, M. R., Reardon, D. A., Pozzi, O. R., Vaidyanathan, G. & Bigner, D. D. Targeted α-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl. Med. Biol. 34, 779–785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zalutsky, M. & Reardon, D. Clinical experience with α-particle-emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 49, 30–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Andersson, H. et al. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab′)2—a phase I study. J. Nucl. Med. 50, 1153–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Guérard, F., Lee, Y. S., Baidoo, K., Gestin, J. F. & Brechbiel, M. W. Unexpected behavior of the heaviest halogen astatine in the nucleophilic substitution of aryliodonium salts. Chem. Eur. J. 22, 12332–12339 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Champion, J. et al. Astatine standard redox potentials and speciation in acidic medium. J. Phys. Chem. A 114, 576–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Sergentu, D. C. et al. Advances on the determination of the astatine Pourbaix diagram: predomination of AtO(OH)2 over At in basic conditions. Chem. Eur. J. 22, 2964–2971 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Guo, N. et al. The heaviest possible ternary trihalogen species, IAtBr, evidenced in aqueous solution: an experimental performance driven by computations. Angew. Chem. Int. Ed. 128, 15595–15598 (2016).

    Article  Google Scholar 

  32. Pilme, J. et al. QTAIM analysis in the context of quasirelativistic quantum calculations. J. Chem. Theory Comput. 10, 4830–4841 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Rothe, S. et al. Measurement of the first ionization potential of astatine by laser ionization spectroscopy. Nat. Commun. 4, 1835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fleig, T. & Sadlej, A. J. Electric dipole polarizabilities of the halogen atoms in 2 P 1/2 and 2 P 3/2 states: scalar relativistic and two-component configuration–interaction calculations. Phys. Rev. A 65, 032506 (2002).

    Article  CAS  Google Scholar 

  35. Corson, D. R., MacKenzie, K. R. & Segre, E. Artificially radioactive element 85. Phys. Rev. 58, 672 (1940).

    Article  CAS  Google Scholar 

  36. Hermann, A., Hoffmann, R. & Ashcroft, N. W. Condensed astatine: monatomic and metallic. Phys. Rev. Lett. 111, 116404 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Champion, J. et al. Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution. Phys. Chem. Chem. Phys. 13, 14984–14992 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Alkorta, I., Blanco, F., Solimannejad, M. & Elguero, J. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J. Phys. Chem. A 112, 10856–10863 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Hill, J. G. & Hu, X. Theoretical insights into the nature of halogen bonding in prereactive complexes. Chem. Eur. J. 19, 3620–3628 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Maurice, R. et al. Effective bond orders from two-step spin–orbit coupling approaches: the I2, At2, IO+, and AtO+ case studies. J. Chem. Phys. 142, 094305 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Pilmé, J., Renault, E., Ayed, T., Montavon, G. & Galland, N. Introducing the ELF topological analysis in the field of quasirelativistic quantum calculations. J. Chem. Theory Comput. 8, 2985–2990 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Sergentu, D., Amaouch, M., Pilmé, J., Galland, N. & Maurice, R. Electronic structures and geometries of the XF3 (X=Cl, Br, I, At) fluorides. J. Chem. Phys. 143, 114306 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Sergentu, D.-C., David, G., Montavon, G., Maurice, R. & Galland, N. Scrutinizing ‘invisible’ astatine: a challenge for modern density functionals. J. Comput. Chem. 37, 1345–1354 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Champion, J. et al. Investigation of astatine(III) hydrolyzed species: experiments and relativistic calculations. J. Phys. Chem. A 117, 1983–1990 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kolář, M. H. & Hobza, P. Computer modeling of halogen bonds and other σ-hole interactions. Chem. Rev. 116, 5155–5187 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilbur, D. S. et al. Reagents for astatination of biomolecules: comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug. Chem. 15, 203–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Makvandi, M. et al. The pre-clinical characterization of an alpha-emitting sigma-2 receptor targeted radiotherapeutic. Nucl. Med. Biol. 43, 35–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Alliot, C., Cherel, M., Barbet, J., Sauvage, T. & Montavon, G. Extraction of astatine-211 in diisopropylether (DIPE). Radiochim. Acta 97, 161–165 (2009).

    Article  CAS  Google Scholar 

  50. Lindegren, S., Bäck, T. & Jensen, H. J. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl. Radiat. Isot. 55, 157–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A. & Leito, I. Acidity of strong acids in water and dimethyl sulfoxide. J. Phys. Chem. A 120, 3663–3669 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Straatsma, T. P. et al. NWChem, A Computational Chemistry Package for Parallel Computers v.5.1.1 (Pacific Northwest National Laboratory, Richland, 2008).

    Google Scholar 

  53. Peterson, K. A., Shepler, B. C., Figgen, D. & Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, 13877–13883 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Peterson, K. A., Figgen, D., Goll, E., Stoll, H. & Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 119, 11113–11123 (2003).

    Article  CAS  Google Scholar 

  55. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  56. Zhao, Y. & Truhlar, D. G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A 109, 5656–5667 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Dunning, J., Peterson, K. A. & Wilson, A. K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 114, 9244–9253 (2001).

    Article  CAS  Google Scholar 

  58. Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  59. Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796 (1992).

    Article  CAS  Google Scholar 

  60. Armbruster, M. K., Klopper, W. & Weigend, F. Basis-set extensions for two-component spin–orbit treatments of heavy elements. Phys. Chem. Chem. Phys. 8, 4862–4865 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Boys, S. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the French National Agency for Research called ‘Investissements d’Avenir’ (ANR-11-EQPX-0004, ANR-11-LABX-0018). The work was carried out using HPC resources from GENCI-CINES/IDRIS (grant 2016-x2016085117) and from CCIPL (Centre de Calcul Intensif des Pays de la Loire). The authors acknowledge the GIP ARRONAX for the production of At-211.

Author information

Authors and Affiliations

Authors

Contributions

N.Guo, J.C., D.T., J.G., R.M. and G.M. conceived and performed the experimental study. D.T., R.M., J.G. and N.Galland conceived and performed the computational studies. All authors jointly discussed the results and their interpretation, and participated in writing the manuscript.

Corresponding authors

Correspondence to Gilles Montavon or Nicolas Galland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4,Tables 1 and 2and  Structures 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Maurice, R., Teze, D. et al. Experimental and computational evidence of halogen bonds involving astatine. Nature Chem 10, 428–434 (2018). https://doi.org/10.1038/s41557-018-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0011-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing