Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C−H arylation

Abstract

New methods capable of effecting cyclization, and forming novel three-dimensional structures while maintaining favourable physicochemical properties are needed to facilitate the development of cyclic peptide-based drugs that can engage challenging biological targets, such as protein–protein interactions. Here, we report a highly efficient and generally applicable strategy for constructing new types of peptide macrocycles using palladium-catalysed intramolecular C(sp3)–H arylation reactions. Easily accessible linear peptide precursors of simple and versatile design can be selectively cyclized at the side chains of either aromatic or modified non-aromatic amino acid units to form various cyclophane-braced peptide cycles. This strategy provides a powerful tool to address the long-standing challenge of size- and composition-dependence in peptide macrocyclization, and generates novel peptide macrocycles with uniquely buttressed backbones and distinct loop-type three-dimensional structures. Preliminary cell proliferation screening of the pilot library revealed a potent lead compound with selective cytotoxicity toward proliferative Myc-dependent cancer cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy of constructing cyclophane-braced peptide macrocycles via C–H functionalization of amino acid side chains.
Fig. 2: Macrocyclization of peptides at iodinated aromatic amino acid units via Pd-catalysed intramolecular C(sp3)–H arylation.
Fig. 3: Synthesis of small-sized cyclophanes via Pd-catalysed intramolecular C(sp3)–H arylation.
Fig. 4: DFT calculation of Pd-catalysed synthesis of para-cyclophane 29.

Similar content being viewed by others

References

  1. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery: an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    CAS  PubMed  Google Scholar 

  2. Marsault, E. & Peterson, M. L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54, 1961–2004 (2011).

    CAS  PubMed  Google Scholar 

  3. Cardote, T. A. F. & Ciulli, A. Cyclic and macrocyclic peptides as chemical tools to recognise protein surfaces and probe protein–protein interactions. ChemMedChem 11, 787–794 (2016).

    CAS  PubMed  Google Scholar 

  4. Walsh, C. T., Brien, R. V. O. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 7098–7124 (2013).

    CAS  Google Scholar 

  5. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

    CAS  PubMed  Google Scholar 

  6. Hill, T. A., Shepherd, N. E., Diness, F. & Fairlie, D. P. Constraining cyclic peptides to mimic protein structure motifs. Angew. Chem. Int. Ed. 53, 13020–13041 (2014).

    CAS  Google Scholar 

  7. Lau, Y. H., de Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015).

    CAS  PubMed  Google Scholar 

  8. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    CAS  PubMed  Google Scholar 

  9. Frost, J. R., Scully, C. C. G. & Yudin, A. K. Oxadiazole grafts in peptide macrocycles. Nat. Chem. 3, 1105–1111 (2016).

    Google Scholar 

  10. Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Osberger, T. J., Rogness, D. C., Kohrt, J. T., Stepan, A. F. & White, M. C. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 537, 214–219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blackwell, H. E. & Grubbs, R. H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. 37, 3281–3284 (1998).

    CAS  Google Scholar 

  13. Kim, Y.-W., Grossmann, T. N. & Verdine, G. L. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 6, 761–771 (2011).

    CAS  PubMed  Google Scholar 

  14. Lawson, K. V., Rose, T. E. & Harran, P. G. Template-constrained macrocyclic peptides prepared from native, unprotected precursors. Proc. Natl Acad. Sci. USA 110, E3753–E3760 (2013).

    PubMed  Google Scholar 

  15. Beckmann, H. S. G. et al. A strategy for the diversity-oriented synthesis of macrocyclic scaffolds using multidimensional coupling. Nat. Chem. 5, 861–867 (2013).

    CAS  PubMed  Google Scholar 

  16. Rogdan, A. R., Jerome, S. V., Houk, K. N. & James, K. Strained cyclophane macrocycles: impact of progressive ring size reduction on synthesis and structure. J. Am. Chem. Soc. 132, 2127–2138 (2010).

    Google Scholar 

  17. Bockus, A. T., McEwen, C. M. & Lokey, R. S. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr. Top. Med. Chem. 13, 821–836 (2013).

    CAS  PubMed  Google Scholar 

  18. Booker, S. J. Anaerobic functionalization of unactivated C–H bonds. Curr. Opin. Chem. Biol. 13, (58–73 (2009).

    Google Scholar 

  19. Sydor, P. K. et al. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nat. Chem. 3, 388–392 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng, Y. & Chen, G. Total synthesis of celogentin C by stereoselective C–H activation. Angew. Chem. Int. Ed. 49, 958–961 (2010).

    CAS  Google Scholar 

  22. Cram, D. J. & Cram, J. M. Cyclophane chemistry: bent and battered benzene rings. Acc. Chem. Res. 4, 204–213 (1970).

    Google Scholar 

  23. Gulder, T. & Baran, P. S. Strained cyclophane natural products: macrocyclization at its limits. Nat. Prod. Rep. 29, 899–934 (2012).

    CAS  PubMed  Google Scholar 

  24. Dong, H., Limberakis, C., Liras, S., Price, D. & James, K. Peptidic macrocyclization via palladium-catalyzed chemoselective indole C2 arylation. Chem. Commun. 48, 11644–11646 (2012).

    CAS  Google Scholar 

  25. Mendive-Tapia, L. et al. New peptide architectures through C–H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J.-Q. Site-selective C(sp 3)−H functionalization of di-, tri-, and tetrapeptides at the N-terminus. J. Am. Chem. Soc. 136, 16940–16946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Noisier, A. F. M., García, J., Ionut, I. A. & Albericio, F. Stapled peptides by late-stage C(sp 3)–H activation. Angew. Chem., Int. Ed. 56, 314–318 (2017).

    CAS  Google Scholar 

  28. Tang, J., He, Y., Chen, H., Sheng, W. & Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp 3)–H activation. Chem. Sci. 8, 4565–4570 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Godula, K. & Sames, D. C–H Bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  30. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H Bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    CAS  Google Scholar 

  31. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    CAS  PubMed  Google Scholar 

  32. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    CAS  Google Scholar 

  33. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Noisier, F. M. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    CAS  PubMed  Google Scholar 

  35. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp 3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    CAS  PubMed  Google Scholar 

  36. Shabashov, M. & Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp 2 and sp 3 carbon–hydrogen bonds. J. Am. Chem. Soc. 132, 3965–3972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Daugulis, O., Do, H. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Reddy, B. V. S., Reddy, L. R. & Corey, E. J. Novel acetoxylation and C−C Coupling reactions at unactivated positions in α-amino acid derivatives. Org. Lett. 8, 3391–3394 (2006).

    CAS  PubMed  Google Scholar 

  39. He, G., Wang, B., Nack, W. A. & Chen, G. Syntheses and transformations of α‐amino acids via palladium-catalyzed auxiliary-directed sp 3 C−H functionalization. Acc. Chem. Res. 49, 635–645 (2016).

    CAS  PubMed  Google Scholar 

  40. Feng, Y., Wang, Y., Landgraf, B., Liu, S. & Chen, G. Facile benzo-ring construction via palladium-catalyzed functionalization of unactivated sp 3 C−H bonds under mild reaction conditions. Org. Lett. 12, 3414–3417 (2010).

    CAS  PubMed  Google Scholar 

  41. He, G., Zhang, S., Nack, W. A. & Chen, G. Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C(sp 3)−H bonds. Angew. Chem., Int. Ed. 52, 11124–11128 (2013).

    CAS  Google Scholar 

  42. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, 2009).

  43. Lapointe, D. & Fagnou, K. Overview of the mechanistic work on the concerted metallationdeprotonation pathway. Chem. Lett. 39, 1118–1126 (2010).

    Google Scholar 

  44. Wang, B., Nack, W. A., He, G., Zhang, S.-Y. & Chen, G. Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the methyl group of alanine at room temperature: synthesis of β-arylated α-amino acids through sequential C–H functionalization. Chem. Sci. 5, 3952–3957 (2014).

    CAS  Google Scholar 

  45. Dang, Y. et al. The mechanism of a ligand-promoted C(sp 3)–H activation and arylation reaction via palladium catalysis: theoretical demonstration of a Pd(ii)/Pd(iv) redox manifold. J. Am. Chem. Soc. 137, 2006–2014 (2015).

    CAS  PubMed  Google Scholar 

  46. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    CAS  PubMed  Google Scholar 

  49. McKeown, M. R. & Bradner, J. E. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Persp. Med. 4, a014241 (2014).

  50. Ottaviani, G., Martel, S. & Carrupt, P.-A. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 49, 3948–3954 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.C. thanks the State Key Laboratory of Elemento-Organic Chemistry at Nankai University, NSFC-21672105, NSFC-21421062, the ‘111’ project (B06005) of the Ministry of Education of China, and programme 973 (2014CB849603 to X.Q.) for financial support of the experimental part of this work. P.L. thanks the University of Pittsburgh for financial support for the computational part of the work. Calculations were performed at the Center for Simulation and Modeling at the University of Pittsburgh and the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the National Science Foundation. W.S. and M.M. thank M. Hull, M. Wogan, H. Nguyen and E. Chen of Calibr for technical support and help. G.C. dedicates this work to Q. Zhou on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. carried out most of the reaction optimization and structural determination of products, and prepared the Supplementary Information. Y.M. developed peptide macrocyclization at non-aromatic amino acid units. M.Z., W.H., Y.H. and Q.W. prepared some amino acid building blocks and peptide substrates. J.C. conducted all the X-ray crystallography experiments. G.L. conducted the computations. M.M. carried out the cell proliferation assays. W.S. supervised the biological activity studies. X.Q. advised the macrocycles druggability especially the permeability optimization and directed the PAMPA assay. M.S. carried out the PAMPA assays and analysed the PAMPA data. G.H. supervised experimental studies. P.L. directed the computational studies. P.L. and G.L. prepared the computational sections of the manuscript. G.C. formulated the initial ideas of this work, supervised the project, coordinated with P.L. on computational studies, coordinated with W.S. on biological studies, and prepared most of the manuscript.

Corresponding authors

Correspondence to Gang He, Xiangbing Qi, Weijun Shen, Peng Liu or Gong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supporting Information

Supplementary Experimental Details, Supplementary Data and Supplementary Figures.

Life Sciences Reporting Summary

Crystallographic data

Crystallographic data for compound 3a; CCDC reference: 1526698

Crystallographic data

Structure factors file for compound 3a; CCDC reference: 1526698

Crystallographic data

Crystallographic data for compound 3b; CCDC reference: 1526699

Crystallographic data

Structure factors file for compound 3b; CCDC reference: 1526699

Crystallographic data

Crystallographic data for compound 11a; CCDC reference: 1526702

Crystallographic data

Structure factors file for compound 11a; CCDC reference: 1526702

Crystallographic data

Crystallographic data for compound 17; CCDC reference: 1526701

Crystallographic data

Structure factors file for compound 17; CCDC reference: 1526701

Crystallographic data

Crystallographic data for compound 29a; CCDC reference: 1526700

Crystallographic data

Structure factors file for compound 29a; CCDC reference: 1526700

Crystallographic data

Crystallographic data for compound 29b; CCDC reference: 1526703

Crystallographic data

Structure factors file for compound 29b; CCDC reference: 1526703

Crystallographic data

Crystallographic data for compound 31a; CCDC reference: 1526704

Crystallographic data

Structure factors file for compound 31; CCDC reference: 1526704

Crystallographic data

Crystallographic data for compound 32; CCDC reference: 1526705

Crystallographic data

Structure factors file for compound 32; CCDC reference: 1526705

Crystallographic data

Crystallographic data for compound 34a; CCDC reference: 1526707

Crystallographic data

Structure factors file for compound 34a; CCDC reference: 1526707

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lu, G., Sun, M. et al. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C−H arylation. Nature Chem 10, 540–548 (2018). https://doi.org/10.1038/s41557-018-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0006-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing