Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

Abstract

Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of the structure and synthesis of FAMEs through post-translational modification of ELPs.
Fig. 2: Temperature-triggered macroscale self-assembly of FAMEs.
Fig. 3: DLS and spectroscopic  characterization of the effect of myristoylation on the structure and self-assembly of FAMEs.
Fig. 4: Characterization of the morphology of the FAME aggregates and visualization of their temperature-triggered phase transition and self-assembly across different length scales and temperatures.
Fig. 5: SEM morphological characterization of the macroscopic aggregates formed by heating M–B2–ELP and M–B3–ELP.
Fig. 6: Proposed three-step mechanism of FAME self-assembly.

References

  1. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    CAS  PubMed  Google Scholar 

  2. Maskarinec, S. A. & Tirrell, D. A. Protein engineering approaches to biomaterials design. Curr. Opin. Biotechnol. 16, 422–426 (2005).

    CAS  PubMed  Google Scholar 

  3. Chilkoti, A., Dreher, M. R. & Meyer, D. E. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv. Drug Deliv. Rev. 54, 1093–1111 (2002).

    CAS  PubMed  Google Scholar 

  4. Haider, M., Megeed, Z. & Ghandehari, H. Genetically engineered polymers: status and prospects for controlled release. J. Control. Release 95, 1–26 (2004).

    CAS  PubMed  Google Scholar 

  5. Chow, D., Nunalee, M. L., Lim, D. W., Simnick, A. J. & Chilkoti, A. Peptide-based biopolymers in biomedicine and biotechnology. Mater. Sci. Eng. R. Rep. 62, 125–155 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Hochkoeppler, A. Expanding the landscape of recombinant protein production in Escherichia coli. Biotechnol. Lett. 35, 1971–1981 (2013).

    CAS  PubMed  Google Scholar 

  7. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  8. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  9. Wold, F. In vivo chemical modification of proteins. Annu. Rev. Biochem. 50, 783–814 (1981).

    CAS  Google Scholar 

  10. Walsh, G. & Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252 (2006).

    CAS  PubMed  Google Scholar 

  11. Pinkas, D. M., Ding, S., Raines, R. T. & Barron, A. E. Tunable, post-translational hydroxylation of collagen domains in Escherichia coli. ACS Chem. Biol. 6, 320–324 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim, S. et al. In vivo post-translational modifications of recombinant mussel adhesive protein in insect cells. Biotechnol. Prog. 27, 1390–1396 (2011).

    CAS  PubMed  Google Scholar 

  13. Gordon, J. I., Duronio, R. J., Rudnick, D. A., Adams, S. P. & Gokel, G. W. Protein N-myristoylation. J. Biol. Chem. 266, 8647–8650 (1991).

    CAS  PubMed  Google Scholar 

  14. Berndt, P., Fields, G. B. & Tirrell, M. Synthetic lipidation of peptides and amino acids: Monolayer structure and properties. J. Am. Chem. Soc. 117, 9515–9522 (1995).

    CAS  Google Scholar 

  15. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  PubMed  Google Scholar 

  16. Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter 7, 4122 (2011).

    CAS  Google Scholar 

  17. Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    CAS  PubMed  Google Scholar 

  19. Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997).

    CAS  Google Scholar 

  20. Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Urry, D. W. et al. Elastic protein-based polymers in soft tissue augmentation and generation. J. Biomater. Sci. Polym. Ed. 9, 1015–1048 (1998).

    CAS  PubMed  Google Scholar 

  22. MacEwan, S. R. & Chilkoti, A. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010).

    CAS  PubMed  Google Scholar 

  23. Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc. Natl Acad. Sci. USA 110, 2792–2797 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luginbuhl, K. M. et al. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat. Biomed. Eng. 1, 0078 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. McHale, M. K., Setton, L. A. & Chilkoti, A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 11, 1768–1779 (2005).

    CAS  PubMed  Google Scholar 

  26. Lim, D. W., Nettles, D. L., Setton, L. A. & Chilkoti, A. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 9, 222–230 (2008).

    CAS  PubMed  Google Scholar 

  27. MacEwan, S. R. & Chilkoti, A. Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. Nano Lett. 12, 3322–3328 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho, Y. et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765–13771 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McDaniel, J. R., Radford, D. C. & Chilkoti, A. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14, 2866–2872 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Duronio, R. J. et al. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc. Natl Acad. Sci. USA 87, 1506–1510 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Heal, W. P. et al. Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chem. Commun. 3, 480–482 (2008).

    Google Scholar 

  32. Kulkarni, C., Kinzer-Ursem, T. L. & Tirrell, D. A. Selective functionalization of the protein N terminus with N-myristoyl transferase for bioconjugation in cell lysate. ChemBioChem 14, 1958–1962 (2013).

    CAS  PubMed  Google Scholar 

  33. Kulkarni, C., Lo, M., Fraseur, J. G., Tirrell, D. A. & Kinzer-Ursem, T. L. Bioorthogonal chemoenzymatic functionalization of calmodulin for bioconjugation applications. Bioconjug. Chem. 26, 2153–2160 (2015).

    CAS  PubMed  Google Scholar 

  34. Ho, S. H. & Tirrell, D. A. Chemoenzymatic labeling of proteins for imaging in bacterial cells. J. Am. Chem. Soc. 138, 15098–15101 (2016).

    CAS  PubMed  Google Scholar 

  35. Eisenhaber, F. et al. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Π, NMT and PTS1. Nucleic Acids Res. 31, 3631–3634 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Paramonov, S. E., Jun, H. W. & Hartgerink, J. D. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).

    CAS  PubMed  Google Scholar 

  37. Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J. Mol. Biol. 317, 523–540 (2002).

    CAS  PubMed  Google Scholar 

  39. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541–557 (2002).

    CAS  PubMed  Google Scholar 

  40. Römer, L. & Scheibel, T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2, 154–161 (2008).

    PubMed  PubMed Central  Google Scholar 

  41. Xu, X. D., Jin, Y., Liu, Y., Zhang, X. Z. & Zhuo, R. X. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. Colloids Surf. B 81, 329–335 (2010).

    CAS  Google Scholar 

  42. Lee, O.-S., Stupp, S. I. & Schatz, G. C. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J. Am. Chem. Soc. 133, 3677–3683 (2011).

    CAS  PubMed  Google Scholar 

  43. Smith, C. K., Withka, J. M. & Regan, L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    CAS  PubMed  Google Scholar 

  44. Minor, D. L. & Kim, P. S. Measurement of the [beta]-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    CAS  PubMed  Google Scholar 

  45. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassouneh, W., Christensen, T. & Chilkoti, A. Elastin-like polypeptides as a purification tag for recombinant proteins. Curr. Protoc. Protein Sci. 6, 6.11 (2010).

    Google Scholar 

  47. Meyer, D. E. & Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3, 357–367 (2002).

    CAS  PubMed  Google Scholar 

  48. Serrano, V., Liu, W. & Franzen, S. An infrared spectroscopic study of the conformational transition of elastin-like polypeptides. Biophys. J. 93, 2429–2435 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, H., Guler, M. O. & Stupp, S. I. The internal structure of self-assembled peptide amphiphiles nanofibers. Soft Matter 3, 454–462 (2007).

    PubMed  Google Scholar 

  50. Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. LeVine, H. 3rd Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stsiapura, V. I. et al. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J. Phys. Chem. B 112, 15893–15902 (2008).

    CAS  PubMed  Google Scholar 

  53. Sulatskaya, A. I., Maskevich, A. A., Kuznetsova, I. M., Uversky, V. N. & Turoverov, K. K. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS ONE 5, e15385 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Newcomb, C. J., Moyer, T. J., Lee, S. S. & Stupp, S. I. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Curr. Opin. Colloid Interface Sci. 17, 350–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mcdaniel, J. R. et al. Noncanonical self-assembly of highly asymmetric genetically encoded polypeptide amphiphiles into cylindrical micelles. Nano Lett. 14, 6590–6598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & Lopez, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Muiznieks, L. D. & Keeley, F. W. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J. Biol. Chem. 285, 39779–39789 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Muiznieks, L. D. et al. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin. Matrix Biol. 36, 39–50 (2014).

    CAS  PubMed  Google Scholar 

  59. Reichheld, S. E., Muiznieks, L. D., Keeley, F. W. & Sharpe, S. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl Acad. Sci. USA 114, E4408–E4415 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).

    CAS  PubMed  Google Scholar 

  61. da Silva, R. M. P. et al. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat. Commun. 7, 11561 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Aluri, S., Pastuszka, M. K., Moses, A. S. & MacKay, J. A. Elastin-like peptide amphiphiles form nanofibers with tunable length. Biomacromolecules 13, 2645–2654 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mejuch, T. & Waldmann, H. Synthesis of lipidated proteins. Bioconjug. Chem. 27, 1771–1783 (2016).

    CAS  PubMed  Google Scholar 

  64. Triola, G., Waldmann, H. & Hedberg, C. Chemical biology of lipidated proteins. ACS Chem. Biol. 7, 87–99 (2012).

    CAS  PubMed  Google Scholar 

  65. Inostroza-Brito, K. E. et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein–peptide system. Nat. Chem. 7, 897–904 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (NSF) through the Research Triangle Materials Research Science and Engineering Center (MRSEC; DMR-1121107) and by the National Institutes of Health (NIH; R01 GM-061232). Duke University Shared Materials Instrumentation Facility (SMIF) and Analytical Instrumentation facility (AIF) at North Carolina State University are members of the North Carolina Research Triangle NanotechnologyNetwork (RTNN), which is supported by the NSF (ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI). The authors thank K. Franz for access to chromatography instrumentation and the peptide synthesizer, J.G. Mark for conducting SDCLM experiments and M. Plue for the SEM imaging. The authors also thank H. Burg for her support in SFM sample preparation and analysis, M.-J. van Zadel for assistance with the variable-temperature ATR-IR experiments and M. Rubinstein for suggestions regarding the mechanism of self-assembly.

Author information

Authors and Affiliations

Authors

Contributions

D.M., K.M.L. and A.C. designed and performed experiments, analysed data and wrote the manuscript. J.R.S., M.D., R.B., H.S.V., S.H.P., F.C.H., K.L.B., N.R.M., I.W. and M.B. performed experiments, analysed data and took part in discussions.

Corresponding author

Correspondence to Ashutosh Chilkoti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, data, analysis; Supplementary figures 1–4; Supplementary tables 1–6

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mozhdehi, D., Luginbuhl, K.M., Simon, J.R. et al. Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nature Chem 10, 496–505 (2018). https://doi.org/10.1038/s41557-018-0005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0005-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing