Article | Published:

Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

Nature Chemistryvolume 10pages592598 (2018) | Download Citation

Abstract

The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for ~1 × 10−10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Crim, F. F. Selective excitation studies of unimolecular reaction dynamics. Annu. Rev. Phys. Chem. 35.1, 657–691 (1984).

  2. 2.

    Crim, F. F. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Natl Acad. Sci. USA 105, 12654–12661 (2008).

  3. 3.

    Morin, M., Levinos, N. J. & Harris, A. L. Vibrational energy transfer of CO/Cu(100): nonadiabatic vibration electron coupling. J. Chem. Phys. 96, 3950–3956 (1992).

  4. 4.

    Beckerle, J. D., Casassa, M. P., Cavanagh, R. R., Heilweil, E. J. & Stephenson, J. C. Ultrafast infrared response of adsorbates on metal surfaces: vibrational lifetime of CO/Pt(111). Phys. Rev. Lett. 64, 2090–2093 (1990).

  5. 5.

    Beckerle, J. D., Cavanagh, R. R., Casassa, M. P., Heilweil, E. J. & Stephenson, J. C. Sub-picosecond transient infrared-spectroscopy of adsorbates. Vibrational dynamics of CO/Pt(111). J. Chem. Phys. 95, 5403 (1991).

  6. 6.

    Luntz, A. C. The dynamics of dissociative adsorption on metal surfaces: ‘First principles’ theory—experiment confrontations. Surf. Sci. 603, 1557–1563 (2009).

  7. 7.

    Rettner, C. T., Michelsen, H. A. & Auerbach, D. J. Quantum-state-specific dynamics of the dissociative adsorption and associative desorption of H2 at a Cu(111) surface. J. Chem. Phys. 102, 4625–4641 (1995).

  8. 8.

    Juurlink, L. B. F., McCabe, P. R., Smith, R. R., DiCologero, C. L. & Utz, A. L. Eigenstate-resolved studies of gas-surface reactivity: CH4 (ν 3) dissociation on Ni(100). Phys. Rev. Lett. 83, 868–871 (1999).

  9. 9.

    Higgins, J., Conjusteau, A., Scoles, G. & Bernasek, S. L. State selective vibrational (2ν 3) activation of the chemisorption of methane on Pt (111). J. Chem. Phys. 114, 5277–5283 (2001).

  10. 10.

    Schmid, M. P., Maroni, P., Beck, R. D. & Rizzo, T. R. Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4(2ν 3) on Ni(100). J. Chem. Phys. 117, 8603–8606 (2002).

  11. 11.

    Beck, R. D. & Utz, A. L. in Dynamics of Gas–Surface Interactions: Atomic-Level Understanding of Scattering Processes at Surfaces (eds. Muino, R. D. & Bunsengo, H. F.) 179–212 (Springer, Berlin, 2013).

  12. 12.

    Chadwick, H. & Beck, R. D. Quantum state-resolved studies of chemisorption reactions. Annu. Rev. Phys. Chem. 68, 39–61 (2017).

  13. 13.

    Langmuir, I. Chemical reactions at very low pressures. I. The clean-up of oxygen in a tungsten lamp. J. Am. Chem. Soc. 35, 105–127 (1913).

  14. 14.

    Langmuir, I. Chemical reactions at low pressures. J. Am. Chem. Soc. 37, 1139–1167 (1915).

  15. 15.

    Dombrowski, E., Peterson, E., Del Sesto, D. & Utz, A. L. Precursor-mediated reactivity of vibrationally hot molecules: methane activation on Ir(111). Catal. Today 244, 10–18 (2015).

  16. 16.

    Seets, D. C., Wheeler, M. C. & Mullins, C. B. Mechanism of the dissociative chemisorption of methane over Ir(110): trapping-mediated or direct? Chem. Phys. Lett. 266, 431–436 (1997).

  17. 17.

    Walker, A. V. & King, D. A. Dynamics of the dissociative adsorption of methane on Pt{110}(1 × 2). Phys. Rev. Lett. 82, 5156–5159 (1999).

  18. 18.

    Walker, A. V. & King, D. A. Dynamics of dissociative methane adsorption on metals: CH4 on Pt{110}(1 × 2). J. Chem. Phys. 112, 4739–4748 (2000).

  19. 19.

    Chang, H.-C. & Ewing, G. E. Infrared fluorescence from a monolayer of CO on NaCl(100). Phys. Rev. Lett. 65, 2125 (1990).

  20. 20.

    Head-Gordon, M. & Tully, J. C. Vibrational-relaxation on metal surfaces—molecular orbital theory and application to CO/Cu(100). J. Chem. Phys. 96, 3939–3949 (1992).

  21. 21.

    Head-Gordon, M. & Tully, J. C. Molecular-dynamics with electronic frictions. J. Chem. Phys. 103, 10137–10145 (1995).

  22. 22.

    Krishna, V. & Tully, J. C. Vibrational lifetimes of molecular adsorbates on metal surfaces. J. Chem. Phys. 125, 054706 (2006).

  23. 23.

    Forsblom, M. & Persson, M. Vibrational lifetimes of cyanide and carbon monoxide on noble and transition metal surfaces. J. Chem. Phys. 127, 154303 (2007).

  24. 24.

    Maurer, R. J., Askerka, M., Batista, V. S. & Tully, J. C. Ab-initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation. Phys. Rev. B 94, 115432 (2016).

  25. 25.

    Golibrzuch, K. et al. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. J. Phys. Chem. A 117, 8750–8760 (2013).

  26. 26.

    Golibrzuch, K. et al. CO desorption from a catalytic surface: elucidation of the role of steps by velocity-selected residence time measurements. J. Am. Chem. Soc. 137, 1465–1475 (2015).

  27. 27.

    Ogilvie, J. F., Cheah, S.-L., Lee, Y.-P. & Sauer, S. P. A. Infrared spectra of CO in absorption and evaluation of radial functions fro potential energy and electric dipolar moment. Theor. Chem. Acc. 108, 85–97 (2002).

  28. 28.

    Rettner, C. T. The search for direct vibrational-excitation in gas-surface collisions of CO with Au(111). J. Chem. Phys. 99, 5481–5489 (1993).

  29. 29.

    Barker, J. A. & Auerbach, D. J. Gas surface dynamics, velocity distributions, trapping and residence times. Faraday Discuss. 80, 277–289 (1985).

  30. 30.

    Hurst, J. E. et al. Observation of direct inelastic-scattering in the presence of trapping-desorption scattering: Xe on Pt(111). Phys. Rev. Lett. 43, 1175–1177 (1979).

  31. 31.

    Hurst, J. E., Wharton, L., Janda, K. C. & Auerbach, D. J. Direct inelastic-scattering: Ar from Pt(111). J. Chem. Phys. 78, 1559–1581 (1983).

  32. 32.

    Hurst, J. E., Wharton, L., Janda, K. C. & Auerbach, D. J. Trapping–desorption scattering of argon from Pt(111). J. Chem. Phys. 83, 1376–1381 (1985).

  33. 33.

    Janda, K. C. et al. Direct measurement of velocity distributions in argon beam–tungsten surface scattering. J. Chem. Phys. 72, 2403–2410 (1980).

  34. 34.

    Janda, K. C. et al. Direct inelastic and trapping–desorption scattering of N2 from polycrystalline W—elementary steps in the chemisorption of nitrogen. Surf. Sci. 93, 270–286 (1980).

  35. 35.

    Engelhart, D. P., Wagner, R. J. V., Meling, A., Wodtke, A. M. & Schafer, T. Temperature programmed desorption of weakly bound adsorbates on Au(111). Surf. Sci. 650, 11–16 (2016).

  36. 36.

    Rettner, C. T., Schweizer, E. K. & Mullins, C. B. Desorption and trapping of argon at a 2H-W(100) surface and a test of the applicability of detailed balance to a nonequilibrium system. J. Chem. Phys. 90, 3800–3813 (1989).

  37. 37.

    Shirhatti, P. R., Werdecker, J., Golibrzuch, K., Wodtke, A. M. & Bartels, C. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. J. Chem. Phys. 141, 124704 (2014).

  38. 38.

    Gajdos, M., Eichler, A. & Hafner, J. CO adsorption on close-packed transition and noble metal surfaces: trands from ab-initio calculations. J. Phys. Condens. Matter 16, 1141–1164 (2004).

  39. 39.

    Persson, B. N. J. & Persson, M. Vibrational lifetime for CO adsorbed on Cu(100). Solid State Commun. 36, 175–179 (1980).

  40. 40.

    Liebsch, A. Screening properties of a metal surface at low frequencies and finite wave vectors. Phys. Rev. Lett. 54, 67–70 (1985).

  41. 41.

    Rohr, K. Cross beam experiment for the scattering of low-energy electrons from methane. J. Phys. B 13, 4897–4905 (1980).

  42. 42.

    Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold Company, New York, 1979).

  43. 43.

    Yurchenko, S. N., Tennyson, J., Barber, R. J. & Thiel, W. Vibrational transition moments of CH4 from first principles. J. Mol. Spectrosc. 291, 69–76 (2013).

  44. 44.

    Ran, Q., Matsiev, D., Wodtke, A. M. & Auerbach, D. J. An advanced molecule–surface scattering instrument for study of vibrational energy transfer in gas–solid collisions. Rev. Sci. Instrum. 78, 104104 (2007).

  45. 45.

    Golibrzuch, K. et al. State-to-state time-of-flight measurements of NO scattering from Au (111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. J. Phys. Chem. A 117, 8750–8760 (2013).

  46. 46.

    Auerbach, D. J. Atomic and Molecular Beam Methods Ch. 14. Vol. 1 (ed. Scoles, G.) (Oxford Univ. Press, New York, NY, 1988).

Download references

Acknowledgements

The authors thank A. Kandratsenka for discussions on CO vibrational lifetime estimation and T. Schäfer for his inputs regarding the CO/Au(111) TPD measurements. The authors acknowledge support from the Deutsche Forschungsgemeinschaft CRC1073 under project A04 and from the Ministerium für Wissenschaft und Kultur Niedersachsen and the Volkswagenstiftung under grant no. INST 186/901-1. A.M.W. and D.J.A. acknowledge support from the Alexander von Humboldt Foundation. D.J.A. acknowledges support from The International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen. J.G. acknowledges support from the Max Planck – EPFL Center for Molecular Nanoscience and Technology. I.R. and A.M.W. acknowledge support from the Niedersächsisch-Israelische Gemeinschaftsvorhaben under project no. 574 7 022.

Author information

Author notes

    • Pranav R. Shirhatti

    Present address: Tata Institute of Fundamental Research, Serilingampally Mandal, Ranga Reddy District, Hyderabad, India

Affiliations

  1. Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen, Germany

    • Pranav R. Shirhatti
    • , Kai Golibrzuch
    • , Jan Geweke
    • , Jan Altschäffel
    • , Daniel J. Auerbach
    • , Christof Bartels
    •  & Alec M. Wodtke
  2. Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

    • Pranav R. Shirhatti
    • , Kai Golibrzuch
    • , Jan Altschäffel
    • , Sumit Kumar
    • , Daniel J. Auerbach
    •  & Alec M. Wodtke
  3. Department of Natural Sciences, The Open University of Israel, Raanana, Israel

    • Igor Rahinov
  4. Photonic sensor Technology, Laser-Laboratorium Göttingen e.V, Göttingen, Germany

    • Kai Golibrzuch
  5. École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    • Jörn Werdecker
    •  & Jan Geweke
  6. Physikalisches Institut, Universität Freiburg, Freiburg, Germany

    • Christof Bartels
  7. International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Göttingen, Germany

    • Alec M. Wodtke

Authors

  1. Search for Pranav R. Shirhatti in:

  2. Search for Igor Rahinov in:

  3. Search for Kai Golibrzuch in:

  4. Search for Jörn Werdecker in:

  5. Search for Jan Geweke in:

  6. Search for Jan Altschäffel in:

  7. Search for Sumit Kumar in:

  8. Search for Daniel J. Auerbach in:

  9. Search for Christof Bartels in:

  10. Search for Alec M. Wodtke in:

Contributions

A.M.W. conceived the study. P.R.S., I.R., K.G., J.W., J.G. and C.B. were involved in designing and conducting the scattering experiments. P.R.S. conducted the final data analysis. J.A. performed the computational study. S.K. performed the IR absorption measurements. A.M.W., D.J.A. and C.B. provided conceptual advice both regarding data analysis and interpretation of the results. A.M.W., P.R.S. and I.R. wrote the main paper. P.R.S. wrote the Supplementary Information with input from J.A. and S.K. All authors discussed the results and their interpretation, and provided inputs for preparing the manuscript.

Corresponding author

Correspondence to Alec M. Wodtke.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Data and analysis, Supplementary Figs. 1–11

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41557-018-0003-1

Further reading