Chemical evolution of atmospheric organic carbon over multiple generations of oxidation


The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Measured carbon in the photooxidation of α-pinene, characterized by molecular formula.
Fig. 2: Chemical characterization of carbon measured in the photooxidation of α-pinene in terms of \(\bar{{{\bf{O}}{\bf{S}}}_{{\bf{C}}}}\) and c*, commonly used for simplified representation of atmospheric organic carbon.
Fig. 3
Fig. 4: Changes in atmospheric lifetime and reactivity through multigenerational oxidation of α-pinene.


  1. 1.

    Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 33, 1821–1845 (1999).

    Article  CAS  Google Scholar 

  2. 2.

    Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000).

    Article  CAS  Google Scholar 

  3. 3.

    Lelieveld, J., Gromov, S., Pozzer, A. & Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 16, 12477–12493 (2016).

    Article  CAS  Google Scholar 

  4. 4.

    Yang, Y. et al. Towards a quantitative understanding of total OH reactivity: a review. Atmos. Environ. 134, 147–161 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801 (2007).

    Google Scholar 

  6. 6.

    Jimenez, J.-L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Aumont, B., Szopa, S. & Madronich, S. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 5, 24975–2517 (2005).

    Article  Google Scholar 

  8. 8.

    Kroll, J. H. & Seinfeld, J. H. Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42, 3593–3624 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    Cappa, C. D. & Wilson, K. R. Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmos. Chem. Phys. 12, 9505–9528 (2012).

    Article  CAS  Google Scholar 

  10. 10.

    Donahue, N. M., Epstein, S. A., Pandis, S. N. & Robinson, A. L. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11, 3303–3318 (2011).

    Article  CAS  Google Scholar 

  11. 11.

    Goldstein, A. H. & Galbally, I. Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41, 1514–1521 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S. & Wallington, T. J. Mechanisms of Atmospheric Oxidation of the Alkanes (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  13. 13.

    Lee, A. et al. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. Atmos. 111, D17305 (2006).

    Article  CAS  Google Scholar 

  14. 14.

    Lee, A. et al. Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J. Geophys. Res. Atmos. 111, D07302 (2006).

    Google Scholar 

  15. 15.

    Zhang, X. et al. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl Acad. Sci. USA 111, 5802–5807 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Robinson, A. L. et al. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Isaacman-VanWertz, G. et al. Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discuss. 200, 579–598 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Decarlo, P. F. et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78, 8281–8289 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Graus, M., Müller, M. & Hansel, A. High resolution PTR-TOF: quantification and formula confirmation of VOC in real time. J. Am. Soc. Mass Spectrom. 21, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Jordan, A. et al. A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 286, 122–128 (2009).

    Article  CAS  Google Scholar 

  21. 21.

    Aljawhary, D., Lee, A. K. Y. & Abbatt, J. P. D. High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing. Atmos. Meas. Tech. 6, 3211–3224 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Jokinen, T. et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12, 4117–4125 (2012).

    Article  CAS  Google Scholar 

  23. 23.

    Krechmer, J. E. et al. Formation of low volatility organic compounds and secondary organic aerosol from isoprene hydroxyhydroperoxide low-NO oxidation. Environ. Sci. Technol. 49, 10330–10339 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Lee, B. H. et al. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48, 6309–6317 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Lopez-Hilfiker, F. D. et al. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmos. Meas. Tech. 9, 1505–1512 (2016).

    Article  CAS  Google Scholar 

  26. 26.

    Eddingsaas, N. C. et al. α-Pinene photooxidation under controlled chemical conditions—Part 1: gas-phase composition in low-and high-NOx environments. Atmos. Chem. Phys. 12, 6489–6504 (2012).

    Article  CAS  Google Scholar 

  27. 27.

    Capouet, M., Peeters, J., Nozière, B. & Müller, J.-F. Alpha-pinene oxidation by OH: simulations of laboratory experiments. Atmos. Chem. Phys. Discuss 4, 4039–4103 (2004).

    Article  Google Scholar 

  28. 28.

    Pathak, R. K., Stanier, C. O., Donahue, N. M. & Pandis, S. N. Ozonolysis of α-pinene at atmospherically relevant concentrations: temperature dependence of aerosol mass fractions (yields). J. Geophys. Res. Atmos. 112, D03201 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    Donahue, N. M. et al. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl Acad. Sci. USA 109, 13503–13508 (2012).

    Article  PubMed  Google Scholar 

  30. 30.

    Hatakeyama, S., Ohno, M., Weng, J., Takagi, H. & Akimoto, H. Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987).

    Article  CAS  Google Scholar 

  31. 31.

    Daumit, K. E., Kessler, S. H. & Kroll, J. H. Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discuss. 165, 181–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Ehn, M. et al. A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Ehn, M. et al. Composition and temporal behavior of ambient ions in the boreal forest. Atmos. Chem. Phys. 10, 8513–8530 (2010).

    Article  CAS  Google Scholar 

  34. 34.

    Saunders, S. M., Jenkin, M. E., Derwent, R. G. & Pilling, M. J. Protocol for the development of the Master Chemical Mechanism, MCMv3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003).

    Article  CAS  Google Scholar 

  35. 35.

    Worton, D. R., Gentner, D. R., Isaacman, G. & Goldstein, A. H. Embracing complexity: deciphering origins and transformations of atmospheric organics through speciated measurements. Environ. Sci. Technol. 46, 5265–5266 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Nah, T. et al. Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis. Atmos. Chem. Phys. 16, 9361–9379 (2016).

    Article  CAS  Google Scholar 

  37. 37.

    Trump, E. R., Epstein, S. A., Riipinen, I. & Donahue, N. M. Wall effects in smog chamber experiments: a model study. Aerosol Sci. Technol. 50, 1180–1200 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Ye, P. et al. Vapor wall loss of semi-volatile organic compounds in a Teflon chamber. Aerosol Sci. Technol. 50, 822–834 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    Nozière, B., Barnes, I. & Becker, K.-H. Product study and mechanisms of the reactions of α-pinene and of pinonaldehyde with OH radicals. J. Geophys. Res. Atmos. 104, 23645–23656 (1999).

    Article  Google Scholar 

  40. 40.

    Iyer, S., Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A. & Kurtén, T. Modeling the detection of organic and inorganic compounds using iodide-based chemical ionization. J. Phys. Chem. A 120, 576–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Pagonis, D., Krechmer, J. E., Gouw, J. De, Jimenez, J. L.& Ziemann, P. J. Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds. Atmos. Meas. Tech. 10, 4687–4696 (2017).

  42. 42.

    Kroll, J. H. et al. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 3, 133–139 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Lee, B. H. et al. Highly functionalized organic nitrates in the southeast United States: contribution to secondary organic aerosol and reactive nitrogen budgets. Proc. Natl Acad. Sci. USA 113, 1516–1521 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Manion, J. A. et al. NIST Chemical KineticsDatabase, NIST Standard Reference Database 17 v.7.0 (web version), data v.2015.12 (National Institute of Standards and Technology, 2015);

  45. 45.

    Donahue, N. M. et al. Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environ. Chem. 10, 151–157 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Kroll, J. H., Lim, C. Y., Kessler, S. H. & Wilson, K. R. Heterogeneous oxidation of atmospheric organic aerosol: kinetics of changes to the amount and oxidation state of particle-phase organic carbon. J. Phys. Chem. A 119, 10767–10783 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Dixon-Lewis, G. Flames structure and flame reaction kinetics VII. Reactions of traces of heavy water, deuterium and carbon dioxide added to rich hydrogen + nitrogen + oxygen flames. Proc. R. Soc. London A 330, 219–245 (1972).

    Article  CAS  Google Scholar 

  48. 48.

    Raff, J. D., Stevens, P. S. & Hites, R. A. Relative rate and product studies of the OH–acetone reaction. J. Phys. Chem. A 108, 4728–4735 (2005).

    Article  CAS  Google Scholar 

  49. 49.

    Richards-Henderson, N. K., Goldstein, A. H. & Wilson, K. R. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide. J. Phys. Chem. Lett. 6, 4451–4455 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Paulot, F. et al. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325, 730–733 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    Surratt, J. D. et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl Acad. Sci. USA 107, 6640–6645 (2010).

    Article  PubMed  Google Scholar 

  52. 52.

    Palm, B. B. et al. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmos. Chem. Phys. 16, 2943–2970 (2016).

    Article  CAS  Google Scholar 

  53. 53.

    Chan, A. W. H. et al. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. Atmos. Chem. Phys. 16, 1187–1205 (2016).

    Article  CAS  Google Scholar 

  54. 54.

    Tkacik, D. S., Presto, A. A., Donahue, N. M. & Robinson, A. L. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes. Environ. Sci. Technol. 46, 8773–8781 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Park, J.-H. et al. Active atmosphere–ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341, 643–648 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Nguyen, T. B. et al. Rapid deposition of oxidized biogenic compounds to a temperate forest. Proc. Natl Acad. Sci. USA 112, E392–E401 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Wolfe, G. M. et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 16, 2597–2610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Warneke, C. et al. Photochemical aging of volatile organic compounds in the Los Angeles basin: weekday–weekend effect. J. Geophys. Res. Atmos. 118, 5018–5028 (2013).

    Article  CAS  Google Scholar 

  59. 59.

    Faulhaber, A. E. et al. Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition. Atmos. Meas. Tech. 2, 15–31 (2009).

    Article  CAS  Google Scholar 

  60. 60.

    McManus, J. B. et al. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl. Phys. B Lasers Opt. 92, 387–392 (2008).

    Article  CAS  Google Scholar 

  61. 61.

    Canagaratna, M. R. et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos. Chem. Phys. 15, 253–272 (2015).

    Article  CAS  Google Scholar 

  62. 62.

    Lopez-Hilfiker, F. D. et al. A novel method for online analysis of gas and particle composition: description and evaluation of a filter inlet for gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 7, 983–1001 (2014).

    Article  CAS  Google Scholar 

  63. 63.

    La, Y. S. et al. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation. Atmos. Chem. Phys. 16, 1417–1431 (2016).

    Article  CAS  Google Scholar 

Download references


We thank H. Stark for insights into correcting for mass-dependent transmission in the I CIMS calibration, J.-L. Jimenez for valuable discussions regarding vapour wall loss, C. Heald for valuable discussions of overall chemical trends and L. Wattenberg for the inspiration for the stacked plot approach to visualizing these data. This work was supported in part by the National Science Foundation (NSF) Postdoctoral Research Fellowship programme (AGS-PRF 1433432), as well as grants AGS-1536939, AGS-1537446 and AGS-1536551. D.A.K. acknowledges support from NSF grant AGS-1446286.

Author information




Experiments were conducted by G.I.-V.W., P.M., R.O’B., C.L., J.B.N., J.P.F., P.K.M., C.A., L.S., D.A.K., A.T.L., J.R.R. and S.T.H., with data analysis by these researchers with significant contributions by J.A.M., J.F.H., A.H.G., T.B.O., M.R.C., J.H.K., J.T.J. and D.R.W. G.I.-V.W. and J.H.K. interpreted the results. The manuscript was prepared by G.I.-V.W. and J.H.K., with contributions and editing by all listed authors.

Corresponding authors

Correspondence to Gabriel Isaacman-VanWertz or Jesse H. Kroll.

Ethics declarations

Competing interests

P.M., J.B.N., J.R.R., S.T.H., T.B.O., M.R.C., J.T.J. and D.R.W. are (or were during this work) employees of Aerodyne Research, Inc. (ARI), which developed and commercialized several of the advanced mass spectrometric instruments utilized in this study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experimental details and results

Supplementary Video 1

Chemical characterization of carbon measured in the photooxidation of α-pinene in terms of two parameters commonly used for simplified representations of atmospheric organic carbon: \(\bar{{{\bf{OS}}}_{{\bf{C}}}}\) and c*

Supplementary Video 2

Chemical characterization of carbon measured in the photooxidation of α-pinene in terms of two parameters commonly used for simplified representations of atmospheric organic carbon: \(\bar{{{\bf{OS}}}_{{\bf{C}}}}\) and nC

Supplementary Data 1

A list of all ions measured in this work

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isaacman-VanWertz, G., Massoli, P., O’Brien, R. et al. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chem 10, 462–468 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing