Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The stress response regulator HSF1 modulates natural killer cell anti-tumour immunity

Abstract

Diverse cellular insults converge on activation of the heat shock factor 1 (HSF1), which regulates the proteotoxic stress response to maintain protein homoeostasis. HSF1 regulates numerous gene programmes beyond the proteotoxic stress response in a cell-type- and context-specific manner to promote malignancy. However, the role(s) of HSF1 in immune populations of the tumour microenvironment remain elusive. Here, we leverage an in vivo model of HSF1 activation and single-cell transcriptomic tumour profiling to show that augmented HSF1 activity in natural killer (NK) cells impairs cytotoxicity, cytokine production and subsequent anti-tumour immunity. Mechanistically, HSF1 directly binds and regulates the expression of key mediators of NK cell effector function. This work demonstrates that HSF1 regulates the immune response under the stress conditions of the tumour microenvironment. These findings have important implications for enhancing the efficacy of adoptive NK cell therapies and for designing combinatorial strategies including modulators of NK cell-mediated tumour killing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour-infiltrating NK cells maintain reduced levels of HSF1 activity.
Fig. 2: HSF1 activation in the tumour microenvironment accelerates tumour progression.
Fig. 3: HSF1 stabilization leads to NK cell inhibitory bias and impairs NK-mediated anti-tumour immunity.
Fig. 4: Augmented HSF1 impairs NK cell IFNγ production and cytotoxicity.
Fig. 5: Inverse relationship between the stress response and effector function in NK cells.
Fig. 6: HSF1 regulates an effector programme in NK cells.

Similar content being viewed by others

Data availability

The scRNA-seq, ATAC-seq, ChIP-seq and RNA-seq data that support the findings of this study have been deposited in the GEO under the accession code GSE167552. Previously published data that were re-analysed here are available under the following accession codes: GSE72056 (ref. 17), GSE120575 (ref. 18) and GSE134814 (ref. 19). The mm10/GRCm38 reference genome is available at the NCBI under the RefSeq assembly GCF_000001635.20. All other data supporting the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

No custom code was used for analysis. Analysis of ChIP-seq, ChIPmentation, ATAC-seq and RNA-seq was performed using the SNS pipeline (https://igordot.github.io/sns/) as described in the Methods. scRNA-seq analysis was performed using standard packages as described in the Methods.

References

  1. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dai, C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20160525 (2018).

    Article  PubMed  Google Scholar 

  4. Li, J., Labbadia, J. & Morimoto, R. I. Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol. 27, 895–905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomez-Pastor, R., Burchfiel, E. T. & Thiele, D. J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 4–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santagata, S. et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341, 1238303 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dong, B., Jaeger, A. M. & Thiele, D. J. Inhibiting heat shock factor 1 in cancer: a unique therapeutic opportunity. Trends Pharmacol. Sci. 40, 986–1005 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Dai, C. & Sampson, S. B. HSF1: guardian of proteostasis in cancer. Trends Cell Biol. 26, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Kourtis, N. et al. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat. Cell Biol. 17, 322–332 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kourtis, N. et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat. Med. 24, 1157–1166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binder, R. J. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol. 193, 5765–5771 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Scherz-Shouval, R. et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158, 564–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vihervaara, A. et al. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl Acad. Sci. USA 110, E3388–E3397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scortegagna, M. et al. Siah2 control of T-regulatory cells limits anti-tumor immunity. Nat. Commun. 11, 99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J. et al. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment Cell Melanoma Res. 30, 428–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karlhofer, F. M. & Yokoyama, W. M. Stimulation of murine natural killer (NK) cells by a monoclonal antibody specific for the NK1.1 antigen. IL-2-activated NK cells possess additional specific stimulation pathways. J. Immunol. 146, 3662–3673 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinet, L. & Smyth, M. J. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 15, 243–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat. Rev. Immunol. 11, 645–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res 7, 1162–1174 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chiossone, L. et al. Maturation of mouse NK cells is a 4-stage developmental program. Blood 113, 5488–5496 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Huntington, N. D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Bezman, N. A. et al. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000–1009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fogel, L. A., Sun, M. M., Geurs, T. L., Carayannopoulos, L. N. & French, A. R. Markers of nonselective and specific NK cell activation. J. Immunol. 190, 6269–6276 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Okamura, H., Kashiwamura, S., Tsutsui, H., Yoshimoto, T. & Nakanishi, K. Regulation of interferon-γ production by IL-12 and IL-18. Curr. Opin. Immunol. 10, 259–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Souza-Fonseca-Guimaraes, F., Cursons, J. & Huntington, N. D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 40, 142–158 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Heng, T. S. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Adams, N. M. et al. Transcription factor IRF8 orchestrates the adaptive natural killer cell response. Immunity 48, 1172–1182.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, F. et al. A pan-cancer single-cell panorama of human natural killer cells. Cell 186, 4235–4251.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mace, E. M. et al. Biallelic mutations in IRF8 impair human NK cell maturation and function. J. Clin. Invest. 127, 306–320 (2017).

    Article  PubMed  Google Scholar 

  42. Becknell, B. & Caligiuri, M. A. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Jounaidi, Y., Cotten, J. F., Miller, K. W. & Forman, S. A. Tethering IL2 to its receptor IL2Rβ enhances antitumor activity and expansion of natural killer NK92 cells. Cancer Res. 77, 5938–5951 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hietanen, T., Kapanen, M. & Kellokumpu-Lehtinen, P. L. Natural killer cell viability after hyperthermia alone or combined with radiotherapy with or without cytokines. Anticancer Res. 38, 655–663 (2018).

    CAS  PubMed  Google Scholar 

  45. Inoue, S., Ikehara, S., Nakamura, T., Good, R. A. & Hamashima, Y. Two natural killer-cell subpopulations distinguished by heat sensitivity. J. Clin. Immunol. 5, 421–426 (1985).

    Article  CAS  PubMed  Google Scholar 

  46. Won, S. J. & Lin, M. T. Thermal stresses reduce natural killer cell cytotoxicity. J. Appl Physiol. 79, 732–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Kokolus, K. M. et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl Acad. Sci. USA 110, 20176–20181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krämer, B. et al. Early IFN-alpha signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 54, 2650–2669.e14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee, N. et al. Strategy of using intratreatment hypoxia imaging to selectively and safely guide radiation dose de-escalation concurrent with chemotherapy for locoregionally advanced human papillomavirus-related oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 96, 9–17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Laskowski, T. J., Biederstadt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Le Masson, F. et al. Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol. Cell. Biol. 31, 3410–3423 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chiriboga, L., Callis, G. M., Wang, Y. & Chlipala, E. Guide for collecting and reporting metadata on protocol variables and parameters from slide-based histotechnology assays to enhance reproducibility. J. Histotechnol. 45, 132–147 (2022).

    Article  PubMed  Google Scholar 

  54. Day, W. A. et al. Covalently deposited dyes: a new chromogen paradigm that facilitates analysis of multiple biomarkers in situ. Lab Invest. 97, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.21–21.29.29 (2015).

  56. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Aifantis laboratory for helpful discussions; J. Weber for the B16-F10 cell line and M. Bosenberg for the YUMM1.7 and YUMMER1.7 cell lines; S. Koralov for expertise in Southern blotting technology; the members of the Interdisciplinary Melanoma Cooperative Group at the NYU Perlmutter Cancer Center for scientific input and discussions; A. Heguy and the NYU Genome Technology Center, supported in part by the grant P30CA016087 from the National Institutes of Health (NIH) and the National Cancer Institute (NCI), for expertise with sequencing experiments; the NYU Histology Core (supported in part by the grant P30CA016087 from the NIH, NCI) for assistance; and the NYU Langone Cytometry and Cell Sorting Laboratory (supported in part by grant P30CA016087 from the NIH/NCI) for cell sorting and flow cytometry technologies. This work was supported in part by the Laura and Isaac Perlmutter Cancer Center Support Grant; NIH/NCI P30CA016087 and the NYULH Center for Biospecimen Research and Development, Histology and Immunohistochemistry Laboratory (RRID:SCR_018304). This work used computing resources at the High-Performance Computing Facility at the NYU Medical Center. Figure 2a,c,g and Extended Data Fig. 4d were created with BioRender.com released under an Academic Licence. I.A. is supported by the NCI at the NIH (grant nos. RO1CA202025, RO1CA202027, RO1CA228135 and 1P50CA225450). K.H. is supported by the NIH (training grants MSTP T32 GM136573, T32 CA009161 (Levy) and the Ruth L. Kirschstein Predoctoral NRSA F30 CA232704). N.K. is supported a Human Frontiers Science Program Long Term Fellowship (LT000150/2013-L) and previously by a Charles H. Revson Senior Fellowship in Biomedical Science (15–31) and a European Molecular Biology Organization (EMBO) Long Term Fellowship (ALTF 850-2012). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I.A., N.K. and K.H. conceptualized the project. K.H., N.K., G.G. and L.C. designed and performed biological experiments with the assistance of E.B., O.I., G.G., M.G., L.C., K.A., X.C., K.C., K.B. and Z.S. G.J. performed analysis of immunohistochemistry experiments. T.S., H.Z. and I.D. developed software and data curation for computational analysis. K.H., T.S., E.B., G.J., I.D., H.Z. and M.S. performed computational analyses. A.T. and I.A. provided access to instrumentation, computing resources, analysis tools and supervision. K.H., T.S., N.K. and M.S. prepared data and schematics for visualization. L.C. provided resources for multiplex immunohistochemistry experiments. I.O. provided patient samples from the IMCG database. K.H., N.K. and I.A. were responsible for funding acquisition. K.H., N.K. and I.A. wrote the original draft. K.H., N.K., T.S., E.B., M.G., I.O., A.T. and I.A. reviewed the manuscript. K.H., N.K. and I.A. edited the manuscript.

Corresponding authors

Correspondence to Nikos Kourtis or Iannis Aifantis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Variability of HSF1 activity and regulation between populations of the tumour microenvironment.

a, Heatmap of the HSF1 signature in distinct populations in tumours of patients with melanoma16. b, Violin plots and boxplots of the stress score across tumour-infiltrating immune populations in patients with melanoma17. One-way ANOVA. The n values for each cell type are as follows: MF 1267, pDC 282, Treg 3947, CD8T 6744, gdT 948, B 1729, NK 724. c, Heatmap of the HSF1 signature in distinct populations in murine melanoma tumours in wild-type mice18. d, Violin plots and boxplots of the stress score across tumour-infiltrating immune populations in murine melanoma18. One-way ANOVA. The n values for each cell type are as follows: CD8T 474, Treg 182, NK 398, DC 202, MF 2437. e, Boxplots of HSF1 (left) and FBXW7 (right) expression in individual cells from tumour-infiltrating immune populations assessed by scRNA-seq16. The n values for each cell type are as follows: CD8T 1044, MF 125, Treg 57, NK 52, B 515, CD4T 35, T 504, Th 428. b, d, e, Boxplots represent the bottom quartile to top quartile with median indicated. Whiskers represent −1.5 x IQR to 1.5 x IQR. Dots represent outliers from the minima to the maxima of the data.

Extended Data Fig. 2 An in vivo model of augmented HSF1 exhibiting normal hematopoiesis.

a, Schematic of knock-in targeting strategy. AG to GC mutations are indicated by the asterisk. Length in bp: long homology arm (LA) – 6714, point mutation – 14, middle arm (MA) – 404, short homology arm (SA) – 2014, targeted region – 418. b, Identification of embryonic stem cell clones with stable incorporation of the targeting vector. The wild-type (WT, 8591 bp) and knock-in (MUT or S303/7 A, 7567 bp) bands as indicated; the clone (#8) selected for microinjection as indicated by the asterisk. c, Sanger sequencing of the nucleotides corresponding to amino acids 302-308 of the HSF1 protein in mice wild-type or homozygous for the knock-in allele. Positions 303 and 307 are underlined. d, Kaplan-Meier survival analysis of the lifespan of WT or S303/7 A mice (n = 12). Log-rank (Mantel-Cox) test. e, Immunohistochemistry staining with anti-HSF1 antibody of the indicated tissue types from WT (left) or S303/7 A (right) mice. Representative of 3 biological replicates. f, Gating strategy for myeloid populations. g, Gating strategy for lymphoid populations. h, Frequency of myeloid populations in S303/7 A or WT spleen. i, Total count of myeloid populations in S303/7 A or WT spleen. j, Frequency of lymphoid populations in S303/7 A or WT spleen. k, Total count of lymphoid populations in S303/7 A or WT spleen. l, Gating strategy for multipotent progenitors (MPPs) and lineage-biased progenitors. Lineage includes B220, CD11b, CD3e, CD4, CD8a, Ly-6C/Ly-6G, NK1.1, Ter-119. m, Frequency of MPPs in S303/7 A or WT bone marrow. n, Total count of MPPs in S303/7 A or WT bone marrow. o, Frequency of lineage-biased progenitors in S303/7 A or WT bone marrow. p, Total count of lineage-biased progenitors in S303/7 A or WT bone marrow. h-k, m-p, n = 4 biological replicates. p calculated by two-tailed t-test, bars represent the mean and error bars represent the SEM.

Source data

Extended Data Fig. 3 Expression of NK cell ligands and receptors.

a, Tumour volumes over time of 1 × 105 YUMMER1.7 cells injected into WT (n = 4) or S303/7 A (n = 5) mice. b, Tumour volumes over time of 2.5 × 105 YUMMER1.7 cells injected into WT (n = 4) or S303/7 A (n = 5) mice. c, Tumour volumes over time of 5 × 105 YUMMER1.7 cells injected into WT (n = 4) or S303/7 A (n = 5) mice. e, Representative histograms of NK cell receptor ligands and isotype controls in B16-F10 and YUMMER1.7 cells. f, quantification of expression of NK cell receptor ligands normalized to isotype controls in B16-F10 and YUMMER1.7. n = 3 technical replicates. bars represent the mean for visualization. g, Immunoblot analysis of HSF1 in total lysate of thymocytes from Hsf1+/+ or Hsf1/ mice. n = 3 biological replicates. h, Frequency of Hsf1+/+ or Hsf1/ NK cells expressing surface activating receptors. i, Frequency of Hsf1+/+ or Hsf1/ NK cells expressing surface inhibitory receptors. j, Frequency of Hsf1+/+ or Hsf1/ NK cells across the maturation stages. h – j, n = 3 biological replicates, bars represent the mean and error bars represent the SEM, p calculated by two-tailed t-test.

Source data

Extended Data Fig. 4 HSF1-stabilized NK cells exhibit decreased IFN-γ production and proliferation.

a, Quantification of CD62L on naïve splenic NK cells in WT or S303/7 A mice. Representative of 2 independent experiments, n = 4 biological replicates. b, Histograms displaying the expression level of GZMB in NK cells cultured with B16-F10 (1:1) or PMA/Ionomycin for 4 h. c, Quantification of GZMB in WT (n = 5) or S303/7 A (n = 4) NK cells following stimulation (4 h) with the conditions indicated. d, Schematic of adoptive transfer of WT or S303/7 A NK cells into Rag2/Il2rg/ mice followed by metastatic challenge with B16-F10 through tail vein injection. e, Representative H&E staining of lung from S303/7 A mice (n = 5) or WT mice (n = 4). Scale bars as indicated. f, Quantification of metastatic lung nodules from H&E images (left) and quantification of tumour as a proportion of total lung tissue (right). p calculated by two-tailed t-test. Boxplots represent the bottom quartile to top quartile with median indicated. Whiskers represent the minima to the maxima of the data. n = 5 for S303/7 A mice and n = 4 for WT mice g, Immunoblot analysis of HSF1 in nuclear lysate from WT or S303/7 A NK cells with or without heat shock as indicated. h, Cell number over time of NK cells from WT (n = 5) or S303/7 A (n = 4) mice expanded with IL-15. p calculated by two-way ANOVA, data presented as mean values, error bars represent the SEM. a, c, bars represent the mean, error bars represent the SEM. p calculated using two-tailed t-test.

Source data

Extended Data Fig. 5 Single-cell transcriptomic characterization of the HSF1-stabilized microenvironment.

a, Schematic of experiment approach. b, Gating strategy for enrichment of CD45+ cells. Live, viable, singlet cells are shown. c, Uniform Manifold Approximation and Projection (UMAP) representation depicting the integration of 6654 HSF1WT (WT) and 4802 HSF1S303/7A (SS03/7 A) cells. d, UMAP representation of colour-coded clustering of the melanoma tumour microenvironment (11,456 cells). e, Normalized expression level of Ptprc (CD45) overlaid on UMAP representation. f, Copy-number variant (CNV) analysis to identify melanoma cells. Heatmap representation of CNVs by chromosome. g, CNV clusters from analysis in F overlaid on UMAP representation. h, A heatmap representation of population-specific markers of immune populations. i, Cell type identification (left) and population proportions (right) based on transcriptional signatures from the Immunological Genome Project. Immune cell types were called based on similarity from bulk transcriptomic signatures of FACS-sorted immune populations. j, Bar graphs of cell cycle status within each cluster by HSF1 status. k, Log2 UMI score of the NK effector signature across CD56brightCD16lo and CD56dimCD16hi NK cell from blood, normal tissue, and tumour, separated by high (>1 standard deviation above the mean) and low (<1 standard deviation below the mean) ‘stress’ score. The n values for each category/cell type are as follows: CD56brightCD16lo: tumour (high) 2081, tumour (low) 1643, normal (high) 532, normal (low) 499, blood (high) 876, blood (low) 932; CD56dimCD16hi: tumour (high) 3351, tumour (low) 2673, normal (high) 2497, normal (low) 2224, blood (high) 6273, blood (low) 7083. p calculated by Kruskal-Wallis t-test. Boxplots represent the bottom quartile to top quartile with median indicated. Whiskers represent −1.5 x IQR to 1.5 x IQR. Dots represent outliers from the minima to the maxima of the data.

Extended Data Fig. 6 Enrichment analysis of genes directly bound by HSF1 in NK cells.

a, Gene set enrichment analysis (GSEA) of HSF1 peaks ranked by adjusted p-value. Top 10 enriching gene sets from the REACTOME database are shown, with those comprised of molecular chaperones indicated in red. b, GSEA of HSF1 peaks ranked by adjusted p-value. Top 10 enriching gene sets from the KEGG database are shown, with natural killer cell-mediated cytotoxicity indicated in red. c, Venn diagram of overlapping peaks in HSF1S303/7A (S303/7 A) and wild-type (WT) NK cells. d, Pie chart of genomic distribution of regions of HSF1 occupancy (3′ UTR, 5′ UTR, distal intergenic, downstream, exon, intron, promoter) in primary NK cells. a, b, p estimation using an adaptive multi-level split Monte-Carlo scheme using Benjamini–Hochberg adjustment for multiple comparisons.

Supplementary information

Reporting Summary

Supplementary Table 1

Table of sequences for primers and oligonucleotides used in the manuscript.

Supplementary Table 2

Table of fluorescence cytometry antibody information.

Supplementary Table 3

Table of buffer recipes for ChIP-seq and ChIPmentation protocols.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 2

Unprocessed source data for Fig. 2b.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 4

Unprocessed source data for Fig. 4k.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 2

Unprocessed source data for Extended Data Fig. 2b.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 3

Unprocessed source data for Extended Data Fig. 3g.

Source Data Extended Data Fig. 4

Statistical source data for Extended Data Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hockemeyer, K., Sakellaropoulos, T., Chen, X. et al. The stress response regulator HSF1 modulates natural killer cell anti-tumour immunity. Nat Cell Biol (2024). https://doi.org/10.1038/s41556-024-01490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41556-024-01490-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer