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Selective gene expression maintains human 
tRNA anticodon pools during differentiation

Lexi Gao1,3, Andrew Behrens1,3, Geraldine Rodschinka1, Sergio Forcelloni1, 
Sascha Wani1, Katrin Strasser1 & Danny D. Nedialkova    1,2 

Transfer RNAs are essential for translating genetic information into proteins. 
The human genome contains hundreds of predicted tRNA genes, many in 
multiple copies. How their expression is regulated to control tRNA repertoires 
is unknown. Here we combined quantitative tRNA profiling and chromatin 
immunoprecipitation with sequencing to measure tRNA expression following 
the differentiation of human induced pluripotent stem cells into neuronal and 
cardiac cells. We find that tRNA transcript levels vary substantially, whereas 
tRNA anticodon pools, which govern decoding rates, are more stable among 
cell types. Mechanistically, RNA polymerase III transcribes a wide range of 
tRNA genes in human induced pluripotent stem cells but on differentiation 
becomes constrained to a subset we define as housekeeping tRNAs. This 
shift is mediated by decreased mTORC1 signalling, which activates the RNA 
polymerase III repressor MAF1. Our data explain how tRNA anticodon pools 
are buffered to maintain decoding speed across cell types and reveal that 
mTORC1 drives selective tRNA expression during differentiation.

During protein synthesis, ribosomes match messenger RNA codons to 
their cognate amino acids via base pairing with complementary anti-
codons in transfer RNAs. These short (approximately 76 nucleotides 
(nt)) adaptor molecules are highly similar in sequence and structure, 
and much more abundant than ribosomes in cells1, which enables rapid 
mRNA decoding. Their similarity poses a challenge as ribosomes must 
faithfully distinguish tRNAs that may differ by a single nucleotide but 
carry distinct amino acids. The relative abundance of charged tRNAs 
matching a given codon can modulate the rate and fidelity of mRNA 
translation2, and changes in the levels or function of individual tRNAs 
have been linked to cancer and neurological diseases3.

The tRNA repertoires of human cells and the mechanisms that 
control them remain largely unknown. This is due to the multicopy 
nature and simple promoter structures of tRNA genes, which makes 
their regulation challenging to predict or quantify. It is similarly chal-
lenging to accurately quantify mature tRNA transcripts because of 
their stable structure and abundant chemical modifications, which 
has resulted in poor characterization of tRNA expression in specific 
cellular contexts. There are 619 predicted tRNA genes in the human 

nuclear genome, which can potentially generate 432 unique tRNA tran-
scripts from 57 tRNA anticodon families4. RNA polymerase III (Pol III) is 
directed to nuclear-encoded tRNA genes by transcription factor IIIC, 
which binds to short intragenic promoter elements (A box and B box) 
and recruits transcription factor IIIB (TFIIIB) to the variable regions 
upstream of tRNA loci5–8. TFIIIB then positions Pol III for initiation and 
can retain it for multiple rounds of transcription9–11. Because of this 
simplistic regulatory model, tRNA gene copy number is often used as 
a proxy for tRNA expression levels. However, although nearly all tRNA 
loci in yeast are transcribed during rapid growth12,13, Pol III enrichment 
at tRNA genes varies among mammalian tissues14–18. The molecular 
basis and quantitative impact of this selective transcription on tRNA 
levels are unknown. The lack of high-resolution measurements of tRNA 
levels has also led to controversy over their role in setting elongation 
rates in mammalian cells19,20.

Here we address these questions by combining modification- 
induced misincorporation tRNA sequencing (mim-tRNAseq)—a 
method we recently developed to quantify the abundance of mature 
tRNA with high accuracy and resolution21,22—with ribosome profiling 
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transcripts we could deconvolute, 161 showed significant differences 
in expression of up to about 70-fold in one or more differentiated 
cell types compared with hiPSC (adjusted P (Padj) ≤ 0.05; Fig. 1f). The 
changes measured by mim-tRNAseq were highly concordant with 
northern blotting analysis performed as validation for three transcripts 
(Extended Data Fig. 1i,j). Among the remaining tRNAs 205 had zero or 
low counts in all cell populations (<0.005% of tRNA-mapped reads; 
Supplementary Table 1). These data demonstrate that tRNA transcript 
pools in human cells are extensively remodelled during differentiation.

Transfer RNA anticodon levels are largely stable across cell 
types
To define how this reprogramming impacts the abundance of tRNA 
anticodon families (Fig. 1d), we aggregated uniquely mapped tRNA 
reads by anticodon before DESeq2 analysis. Among the 57 anticodon 
families encoded by the full set of predicted human tRNA genes, we 
found no evidence of expression for nine, while 47 were robustly 
expressed across all cell types and tRNA-Ile-GAU was only detectable 
at very low levels in hiPSC (0.002% of uniquely mapped reads compared 
with 2.9% for tRNA-Ile-AAU and 0.8% for tRNA-Ile-UAU). The differ-
ent cell types were well-resolved by principal component analysis of 
anticodon-aggregated data (Fig. 1g) and 46 anticodon families were 
differentially regulated in at least one cell type (Padj ≤ 0.05; Fig. 1h 
and Supplementary Table 1). However, the differences in abundance of 
the tRNA anticodon families were much smaller compared with those 
for individual tRNA transcripts, which is consistent with moderate 
variability among tRNA anticodon pools across mouse tissues37. Apart 
from a strong decrease for the poorly expressed tRNA-Ile-GAU, the 
largest changes were for tRNA-Gly-CCC (increased by 1.7–2.5-fold) and 
the selenocysteine-inserting tRNA-SeC-UCA (increased by threefold); 
all other changes were between 0.7- and 1.7-fold. There was no sepa-
ration of anticodon pools among proliferating (hiPSC and NPC) and 
non-dividing (neuron and CM) cells or a substantial overlap of tRNA 
anticodon changes in NPC, neurons and CM with previously identified 
differentiation- or proliferation-linked tRNAs38 (Fig. 1h and Supplemen-
tary Table 1). Although tRNA-Arg-UCU-4-1 was strongly upregulated 
in neurons (approximately 40% of tRNA-Arg-UCU), the abundance of 
this anticodon family decreased by approximately 1.4-fold because 
other isodecoders were downregulated (Extended Data Fig. 1k,l and 
Supplementary Table 1). Thus, despite extensive reprogramming of 
tRNA transcript pools, the availability of tRNA anticodons in human 
cells remains largely unchanged following differentiation.

Codon usage and decoding rates do not vary across cell types
We next investigated whether the small but significant differences in 
tRNA anticodon pools among cell types are linked to differences in 
codon demand as previous studies on its potential coordination with 
tRNA supply have reached conflicting conclusions17,18,38. Codon usage 
weighted for expression correlated significantly with tRNA anticodon 
abundance (Pearson’s correlation coefficient (r) = 0.57–0.66; Fig. 2a) 
and was strikingly stable across all four cell types (coefficient of varia-
tion (CV), 0.77–13.22%; Fig. 2b), in accordance with previous data from 
mouse and human tissues17,18. Notably, the codon usage of mRNAs that 
are highly abundant in all cells correlated significantly more strongly 
with tRNA anticodon levels than that of cell type-specific mRNAs that 
are expressed at high levels (Extended Data Fig. 2a,b). Despite their 
remodelling during differentiation, tRNA anticodon pools are thus 
equally well adapted to global codon demand across cell types.

To test whether the small differences in tRNA anticodon abun-
dance we detected altered the decoding rates, we performed ribosome 
profiling39 in hiPSC and NPC using cycloheximide to inhibit elongation 
and tigecycline to block tRNA entry into empty ribosomal A sites40. This 
yielded two predominant ribosome footprint sizes: 20–23 nt (short) 
and 28–33 nt (long; Extended Data Fig. 3a). The A-site (but not P-site) 
codon dwell times were strongly anticorrelated with the abundance of 

and Pol III chromatin immunoprecipitation–sequencing (ChIP–Seq). 
We find that tRNA repertoires are extensively remodelled following 
the differentiation of human induced pluripotent stem cells (hiPSC) 
into neuronal and cardiac cell types. These changes, however, are 
not driven by altered codon usage across the transcriptome and they 
have a minimal impact on tRNA anticodon availability, which remains 
largely stable. Mechanistically, differential Pol III occupancy at tRNA 
loci determines mature tRNA levels and is driven by sequence features 
in the tRNA gene body and 5′ flanking regions. Decreased mTORC1 
signalling following differentiation activates the Pol III repressor MAF1, 
which restricts Pol III to a subset of tRNA genes we define as ‘housekeep-
ing’. We find that these genes are stably expressed and constitute the 
most abundant isodecoders in each anticodon family. This mechanism 
underlies the broad stability of tRNA anticodon pools and decoding 
rates in different cell types despite tRNA-repertoire remodelling dur-
ing differentiation.

Results
Differentiation extensively remodels tRNA transcript pools
To define the composition of human tRNA pools in physiological set-
tings, we designed a workflow using a reference hiPSC line (kucg-2)23, 
which circumvents the genetic variability of immortalized human 
cell lines24,25 and the changes in Pol III regulation following cellular 
transformation26–29. We used established small molecule-based pro-
tocols to direct hiPSC to differentiate into cardiomyocytes (CM)30,31 
or dividing neuronal progenitor cells (NPC) from which we then 
obtained neurons32,33 (Fig. 1a). This isogenic panel contains cell types 
that are particularly affected by dysregulated tRNA metabolism in 
human diseases3. Immunostaining demonstrated the expected cell 
morphology and uniform expression of the pluripotency markers 
POU5F1 and SOX2 in hiPSC, the neural progenitor markers PAX6 and 
NESTIN in NPC, the neuronal markers MAP2 and CHAT in neurons, and 
ɑ-actinin-2 and cardiac troponin T in CM, confirming culture purity 
(Fig. 1b). Distinct and characteristic transcriptomic signatures in these 
cell lines and the robust expression of defined marker genes were also  
confirmed through RNA sequencing (RNA-Seq; Fig. 1c and Extended 
Data Fig. 1a,b).

We then profiled the abundance of mature tRNA in these isogenic 
cell types using mim-tRNAseq21,22, which enables the accurate quanti-
tation of individual tRNA transcripts (Fig. 1d). We obtained approxi-
mately 80% uniquely mapped and ≤2% multi-mapped reads for all 
samples, a median of approximately 80% of which were full length 
and >95% of which contained the post-transcriptionally added 3′ CCA 
tail (Extended Data Fig. 1c–e), indicating that they were derived from 
mature and translationally competent tRNAs. Less than 4% of uniquely 
mapped reads were derived from mitochondrial tRNAs (Extended 
Data Fig. 1f), and we obtained single-transcript resolution data for 
373 of the 413 (90%) predicted nuclear-encoded tRNA transcripts in 
our curated reference. Seven of the remaining transcripts had <10 
mapped reads and the others were mostly only distinguishable at sites 
that can carry misincorporation-inducing nucleotide modifications, 
which precludes read deconvolution (for example, tRNA-Pro-AGG-1 
and tRNA-Pro-AGG-2; Extended Data Fig. 1g)22. To validate our ability to 
capture known instances of differential tRNA abundance, we examined 
tRNA-Arg-UCU-4, which is highly expressed in the nervous system of 
mice34 and humans35. This expression pattern was recapitulated in our 
workflow, as the proportion of reads mapping to tRNA-Arg-UCU-4 was 
significantly higher in neurons compared with hiPSC, NPC and CM 
(Extended Data Fig. 1h).

We next used DESeq2 (ref. 36) to compare the expression of 
individual tRNAs in differentiated cells relative to hiPSC. Principal 
component analysis demonstrated high reproducibility among rep-
licates. The first principal component (reflecting cellular differentia-
tion) accounted for 89% of the variation; tRNA transcript pools could 
also accurately distinguish cell types (Fig. 1e). Of the 373 unique tRNA 
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cognate tRNA anticodon families in both hiPSC and NPC (Fig. 2c,d and 
Extended Data Fig. 3b), demonstrating the key role of tRNA anticodon 
availability for decoding rates in human cells. Unlike in yeast40,41 the 
correlation in human cells was stronger for long footprints (Fig. 2c,d); it 
was much more modest for short (Pearson’s r = 0.32) and not significant 
for long footprints (or P sites) when tigecycline was not added to the 
cell extracts (Extended Data Fig. 3c–e).

The A-site codon dwell times in NPC and hiPSC were highly cor-
related (Pearson’s r = 0.9) and showed no clear relationship with 
differences in cognate tRNA abundance (Fig. 2e). For example, the 
tRNA-Gly-CCC levels were 1.7-fold higher in NPC cells but the average 

dwell time of ribosomes at GGG increased by only 5% (Extended Data 
Fig. 3f). We next compared the A-site codon dwell times for mRNAs that 
are expressed at high levels in both hiPSC and NPC (shared, n = 393) or 
that are cell type-specific (n = 114 in hiPSC and n = 80 in NPC; Extended 
Data Fig. 2a). Although approximately 20% of the ribosome footprints 
originated from shared mRNAs, <3% mapped to the cell type-specific 
transcripts, resulting in much less concordant codon dwell times 
between replicates (Extended Data Fig. 3g). Accordingly, the A-site 
codon dwell times for shared mRNAs were more highly correlated 
between NPC and hiPSC than the dwell times for cell type-specific 
mRNAs (Pearson’s r = 0.87 versus 0.54) but the higher variance of 
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Fig. 1 | Transfer RNA anticodon pools are maintained largely stable across 
cell types despite extensive reprogramming of tRNA repertoires during 
differentiation. a, Schematic of hiPSC differentiation into NPC, neurons and 
CM. b, Representative fluorescence microscopy images (from at least three 
independent experiments) of immunostaining for cell type-specific marker 
proteins and DAPI. CTNT, cardiac troponin T; ACTN2, ɑ-actinin-2. Scale bars, 
10 µm. c, Gene expression heatmaps for known cell type- and proliferative 
state-specific markers in hiPSC, NPC, neuron and CM cultures (n = 2 biological 
replicates). Standardized Z scores were calculated using DESeq2-normalized 
RNA-Seq gene counts across samples. d, Schematic depicting tRNA classification. 
Distinct tRNA transcripts sharing an anticodon are called isodecoders and 
collectively constitute anticodon families. Members of different anticodon 
families that carry the same amino acid belong to the same isotype. e, Principal 
component (PC) analysis of variance-stabilizing-transformed count data for 

tRNA transcripts from DESeq2 for each cell line (n = 2 biological replicates; 
variance explained by each principal component in parentheses). f, Heatmap 
of tRNA transcript expression dynamics showing only differentially expressed 
transcripts in at least one differentiated cell line relative to hiPSC (Benjamini–
Hochberg-adjusted Wald test, Padj ≤ 0.05). Hierarchically clustered expression 
heatmap showing the scaled Z score of normalized unique transcript counts 
in hiPSC, NPC, neurons and CM (n = 2 biological replicates; left). Differential 
expression for NPC, neurons and CM relative to hiPSC reported as log2-
tranformed fold changes (middle). Base mean normalized to the tRNA transcript 
across all samples (right). g, Principal component analysis as in e calculated from 
variance-stabilizing-transformed count data summed by tRNA anticodon.  
h, Heatmap as in f for count data summed by tRNA anticodon. Anticodon families 
previously38 associated with proliferating (P) or differentiated (D) cells are 
shown. Source numerical data and unprocessed blots are provided.
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the latter was not explained by differences in cognate tRNA levels 
(Extended Data Fig. 3h,i). Therefore, the divergence of tRNA anticodon 
pools between NPC and hiPSC is not sufficient to substantially alter 
decoding speed.

Buffering of tRNA anticodon levels through major 
isodecoders
We investigated whether the stark disparity in the magnitudes of 
changes between tRNA transcript and anticodon abundance is due 
to the unequal contribution of distinct isodecoders to mature tRNA 
pools. To test this, we calculated the number of ‘major’ isodecoders 
that cumulatively contribute ≥90% of the tRNA-mapped reads for each 
anticodon family. Although the number of isodecoders in predicted 
human tRNA genes varies between one and 26, most mature tRNA anti-
codon families were comprised of 1–4 major isodecoders in hiPSC and 
only up to two in NPC and neurons (Fig. 3a,b). For example, the human 
genome encodes nine tRNA-Ala-UGC isodecoders, six of which were 
detectable in mature tRNA pools from hiPSC and two of which became 
predominant in differentiated cells (Fig. 3c). Similarly, three of the five 

predicted tRNA-Pro-UGG isodecoders are expressed in hiPSC and two 
of those account for most mature tRNA-Pro-UGG in differentiated 
cells (Fig. 3c). Globally, most minor isodecoders (>70%) were strongly 
downregulated in differentiated cells (by up to 70-fold); conversely, 
most major isodecoders were upregulated, albeit much more modestly 
(approximately 1.2–4-fold; Fig.3d). Thus, tRNA anticodon pools in dif-
ferent human cell types are buffered through major isodecoders that 
are more stably expressed.

Pol III occupancy at tRNA genes predicts mature tRNA levels
To define the regulatory mechanisms that favour the expression of major 
tRNA isodecoders, we generated genome-wide Pol III occupancy maps 
using ChIP–Seq for the Pol III catalytic core component RPC1 (ref. 42)  
and BRF1, the TFIIIB subunit that recruits Pol III to tRNA5 (Fig. 4a).  
As expected, the ChIP signals for both RPC1 and BRF1 were highly local-
ized and overlapped with predicted tRNA genes (Fig. 4b), whereas 
BRF1 signal was absent from the spliceosomal small nuclear RNA gene 
RNU6-1, which recruits Pol III via a BRF2-containing TFIIIB complex5 
(Extended Data Fig. 4a). Strikingly, we obtained a near-perfect linear 
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correlation between RPC1 ChIP–Seq signal strength aggregated by 
transcript and tRNA levels, measured by mim-tRNAseq, in all the cell 
types we tested (r2 = 0.88–0.9; Fig. 4c and Extended Data Fig. 4b). Dif-
ferences in Pol III occupancy thus explain nearly all of the variation in 
mature tRNA abundance in hiPSC as well during their differentiation.

Differentiation restricts Pol III to housekeeping tRNA loci
To determine how the Pol III-transcribed tRNA repertoire changes dur-
ing differentiation, we performed genome-wide peak identification 
in the RPC1 and BRF1 ChIP–Seq datasets. We found a nearly complete 
overlap between peaks at predicted tRNA genes for the same protein 
across biological replicates as well as between consensus RPC1 and 
BRF1 peaks in the same cell type (Extended Data Fig. 4c,d). Defining 
consensus tRNA peaks and filtering out tRNA genes with ≥25% ambigu-
ously assigned reads enabled single-gene resolution analysis of 558 of 
the 619 (90%) predicted human tRNA genes.

Based on the striking reduction in the number of Pol III peaks at 
tRNA genes we observed following differentiation (Fig. 4d), we defined 
three distinct classes of human tRNA genes. The first comprised genes 
occupied by Poll III in all cell populations (n = 205), which we defined 
as housekeeping. This set encodes transcripts from all 47 anticodon 
families with detectable expression in the mim-tRNAseq datasets (Sup-
plementary Table 1). Housekeeping genes represented 70 and 94% of 
major isodecoders in hiPSC and neurons, respectively (Extended Data 
Fig. 4e). The second set included tRNA genes that were not bound by 

Pol III in any cell type (n = 159), which we called ‘inactive’. The third set 
included tRNA genes at which a significant RPC1 ChIP peak in hiPSC is 
lost in one or more differentiated cell populations (‘repressed’; n = 194, 
Supplementary Table 2). The largest set of tRNA-overlapping RPC1 
ChIP peaks was in hiPSC (n = 397), and differentiated cells contained 
subsets of these peaks (Fig. 4e and Supplementary Table 2). No tRNA 
genes gained RPC1 ChIP peaks specifically in CM, whereas peak sets 
from NPC and neurons each contained one cell type-specific peak. 
Consistent with these data, none of the mature tRNA transcripts that 
were present in a differentiated cell type were undetectable (<0.005% 
of tRNA-mapped reads) in hiPSC (Supplementary Table 1).

To rule out cell line-specific effects, we performed RPC1 ChIP–Seq 
in other hiPSC and immortalized cell lines. Of the 397 RPC1 tRNA peaks 
in kucg-2 hiPSC, 362 were detectable in an independent reference line, 
wibj-2 hiPSC23, as well as in HEK293T cells (Extended Data Fig. 4f). 
Datasets from kucg-2 and wibj-2 contained 24 tRNA peaks that were not 
detected in HEK293T cells, whereas only ten tRNA peaks were present 
in HEK293T or wibj-2 but not in kucg-2 cells. Approximately one-third 
of the predicted human tRNA genes are thus not bound by RPC1 in 
two independent hiPSC lines and the immortalized HEK293T cells. 
Note that 97% of housekeeping genes (199/205) were predicted to be 
active by a random forest classifier trained on tRNA gene sequence and 
genomic context43 (Extended Data Fig. 4g). However, almost half of the 
tRNA genes that we found to be bound by Pol III in hiPSC and repressed 
during differentiation were not predicted as active by this approach.
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To capture both global and gene-specific regulation44, we analysed 
differential RPC1 binding to tRNA genes after spike-in normalization45. 
Pol III occupancy at tRNA genes was significantly reduced in differenti-
ated cells compared with hiPSC (n = 197 in CM, n = 397 in NPC and n = 403 
in neurons; false-discovery rate (FDR) ≤ 0.05; Fig. 4f). The largest effect 
sizes were for genes with low-to-medium RPC1 signal, mirroring the 
decrease in low-abundance tRNA transcripts (Figs. 1f and 3d). The RPC1 
signal increased by less than threefold at 116 tRNA genes with mid to 
high occupancy in CM. By contrast, only two tRNA genes had signifi-
cantly higher occupancy in neurons: one did not pass the peak-calling 
threshold due to low counts and the other (tRNA-Arg-TCT-4-1) encodes 

the neuron-specific tRNA-Arg-UCU-4 (Fig. 4f). Differentiation is thus 
accompanied by a general reduction in Pol III binding to tRNA genes, 
which disproportionately affects lower-occupancy loci. This is not 
accounted for by an overall reduction in Pol III abundance because the 
levels of its core subunits RPC1 and RPC2 decreased only modestly in 
neurons and CM (Extended Data Fig. 4h).

Chromatin remodelling at tRNA genes following 
differentiation
To determine how chromatin state impacts tRNA gene activity46–48, 
we profiled nucleosome-free regions (NFRs) using the assay for 
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P ≤ 0.05). Source numerical data are provided.
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transposase-accessible chromatin with sequencing (ATAC–Seq)49 
and performed ChIP–Seq for the trimethylation of histone H3 at K4 
(H3K4me3; which flanks the transcription start sites (TSS) of active 
Pol II genes)50, K27 (H3K27me3; which marks Pol II genes repressed 
in specific cell states)51 and K9 (H3K9me3; which marks repeat-rich 
heterochromatin)52. We observed a marked concordance between 
the presence of H3K4me3 and RPC1 ChIP signal at tRNAs, in line with 
previous data46,47 (Fig. 5a). Although the NFR signal generally coincided 
with the bodies of RPC1-bound tRNA genes, it was a worse predictor of 
mature tRNA levels than RPC1 ChIP signal, particularly in differentiated 
cells (r2 = 0.56 for NFR ATAC–Seq versus r2 = 0.9 for RPC1 ChIP–Seq in 
neurons; Fig. 4c and Extended Data Figs. 4b and 5a,b). Selective loss of 
RPC1 occupancy coincided with a loss of NFR and H3K4me3 signals as 
well as the appearance of H3K27me3. By contrast, inactive tRNA genes 
were in closed chromatin with weak H3K9me3 enrichment and not 
marked by H3K4me3 or H3K27me3 (Fig. 5a and Extended Data Fig. 5a). 
Analysis of whole-genome bisulfite sequencing datasets from human 
embryonic stem cells53 revealed near-complete CpG methylation at 
inactive tRNAs (Extended Data Fig. 5c), suggesting that DNA methyla-
tion may contribute to their silencing.

Nearly half of predicted human tRNA genes cluster on chromo-
somes 1 and 6; we thus investigated whether nearby loci modulate Pol 
III occupancy. The majority (80%) of housekeeping and repressed tRNA 
genes were in proximity to other active tRNA genes (median distance 
of 0.96 × 103 and 3.69 × 103 base pairs (bp)), which could facilitate the 
concentration of active Pol III in transcription ‘factories’54 to enable its 
recycling. By contrast, inactive tRNAs were more distant from other 
tRNAs (median of 380.5 kbp; Fig. 5b). Although half of the tRNAs with 
gene-resolved RPC1 ChIP data were either within (234/558, 42%) or near 
coding genes (≤500 bp; 44/558, 8%), their linear distance from active or 
inactive Pol II genes was not related to RPC1 occupancy (Extended Data 
Fig. 5d). Active human tRNA genes are thus most often in close proxim-
ity to each other but, in contrast to previous reports46,55, we found no 
clear association between Pol III signal and nearby Pol II activity.

Sequence-dependent features underlie tRNA gene regulation
To test whether selective tRNA gene expression is driven by 
sequence-dependent mechanisms, we first examined the relation-
ship between RPC1 occupancy and overall bit scores from the tRNA 
gene prediction tool tRNAScan-SE4. All housekeeping genes surpassed 
the 55-bit score threshold suggested to distinguish functional tRNAs 
based on anticodon–isotype congruence, A- and B-box consensus 
match and secondary structure4, whereas 131 of the 159 (82%) inactive 
genes fell below this threshold (Fig. 5c and Extended Data Fig. 6a). 
However, 45 tRNA genes with bit scores of <55 had RPC1 peaks in hiPSC 
and there were no detectable RPC1 peaks at 28 loci with bit scores of >55  
(Fig. 5c), confirming that the tRNAScan-SE score alone is not an accurate 
predictor of tRNA gene expression potential43.

To quantify the contribution of A- and B-box promoters to dif-
ferential RPC1 binding, we first compared both promoters separated 
by activity status (Extended Data Fig. 6b). In line with previous data 
from mouse liver16, we found a high degree of sequence similarity 
and only subtle sequence differences across the three tRNA gene  
groups. To quantify these differences, we defined a consensus 
sequence for each promoter based on all predicted human tRNA 
genes (Extended Data Fig. 6c). There was a significantly higher density 
of both the A- and B-box consensus sequences in housekeeping tRNAs 
relative to repressed and inactive tRNAs (Fig. 5d), which suggests that 
subtle differences in A- and B-box promoters contribute to differential 
Pol III occupancy across human cell types. To experimentally validate 
this prediction, we replaced the housekeeping tRNA-Pro-TGG-2-1 
gene with the repressed tRNA-Pro-TGG-1-1 in hiPSC using clustered 
regularly interspaced short palindromic repeats (CRISPR)–CRISPR 
associated protein 9 (Cas9) gene editing. These isodecoders dif-
fer by three nucleotides, one of which is in the A box (Fig. 5e), and 
the RPC1 ChIP signal at tRNA-Pro-TGG-1-1 is lost following differen-
tiation to NPC. Conversely, the RPC1 occupancy at tRNA-Pro-TGG-2-1  
increased (Extended Data Fig. 6d). ChIP–Seq revealed a strong 
reduction in RPC1 occupancy at the edited tRNA-Pro-TGG-2-1 locus 
in both hiPSC and NPC but comparable signal at the neighbour-
ing tRNA-Pro-AGG-2-4 and the unedited tRNA-Pro-TGG-1-1 (Fig. 5e),  
confirming the importance of gene body sequences for Pol III occu-
pancy strength.

Interestingly, the RPC1 ChIP signal at the edited tRNA-Pro-TGG-2-1 
locus still increased in NPC compared with hiPSC, indicating that 
gene body sequences are not the sole determinant of transcriptional 
activity. In many instances identical tRNA genes with different flank-
ing sequences are indeed characterized as different activity classes 
and become selectively occupied by Pol III during differentiation (for 
example, tRNA-Tyr-GTA-5 copies; Extended Data Fig. 6e). In such cases, 
differences in the 5′ flanking sequence might result in differential 
TFIIIB recruitment. As transcription initiates at a variable distance 
from the tRNA gene start11, matching position weight matrix models 
would miss over-represented motifs in these regions. We therefore 
adapted the BPNet convolutional neural network (CNN) architec-
ture56, which can predict the sequence specificity of DNA-binding 
factors from experimental data56–59, to build a CNN called tRNet for 
predicting BRF1 binding from upstream tRNA sequences (Extended 
Data Fig. 6f). Trained using a 200-bp 5′ flanking sequence and tRNA 
activity status (housekeeping, repressed and inactive), tRNet was 
highly accurate in predicting tRNA activity in unseen data (75–78% 
across all folds) and could confidently distinguish housekeeping 
(area under the receiver operating characteristic (AUROC) = 0.91) 
and inactive (AUROC = 0.92) tRNA genes relative to all other classes, 
whereas repressed tRNAs were comparably more difficult to classify 
(AUROC = 0.81; Fig. 5f). Sequence motif detection56,60 revealed that 

Fig. 5 | Transfer RNA gene body and upstream sequences govern differential 
Pol III recruitment. a, Representative heatmaps (bottom) and metagene profiles 
(top) of the ChIP–Seq signal for RPC1, H3K4me3 (K4me3), H3K27me3 (K27me3), 
H3K9me3 (K9me3) and NFRs from ATAC–Seq around tRNA gene start sites 
(±1 kbp) for hiPSC and neurons, separated by tRNA gene activity. b, Distances 
between tRNA genes from different activity classes to their nearest tRNA gene. 
Box plots: centre line, median; box limits, upper and lower quartiles; whiskers, 
1.5× the interquartile range. c, Relationship between RPC1 occupancy at tRNA 
genes (mean from n = 2 biological replicates) and the predicted tRNAScan-SE 
score, separated by tRNA gene activity. Dashed lines, median tRNAScan-SE score 
and RPC1 occupancy; solid blue line, 55-bit score tRNAScan-SE threshold for 
functional tRNAs. d, Two-dimensional binned kernel motif density of the A (left) 
and B (right) box of each tRNA gene (n = 558) separated by tRNA activity (centre 
line, median). Motif counts for density estimation were based on a 90% match 
to the consensus motif. Dot colour is used to indicate whether the tRNAScan-SE 
score is above or below the 55-bit threshold for predicted functionality (Wilcoxon 

test). e, Schematic of CRISPR–Cas9 editing to replace tRNA-Pro-TGG-2-1 with 
tRNA-Pro-TGG-1-1 (left). Fraction of tRNA-mapped RPC1 ChIP–Seq reads at wild-
type and CRISPR-edited hiPSC and NPC (n = 2 biological replicates for each  
cell type; bar, median) at the indicated tRNA genes. f, Receiver  
operating characteristic for tRNet performance on test data for each task.  
g, Top three significant TF-Modisco sequence motifs (FDR-adjusted P ≤ 0.01) for 
housekeeping tRNA genes. h, Schematic of CRISPR–Cas9 editing to insert the 
100-bp sequence upstream of tRNA-Pro-TGG-1-1 in front of tRNA-Pro-TGG-2-1 (left). 
Fraction of tRNA-mapped RPC1 ChIP–Seq reads at wild-type (data from e) and 
CRISPR-edited hiPSC and NPC (n = 2 biological replicates; bar, median)  
at the indicated tRNA genes (right). i, Mean expression of CADM3 in RNA-Seq 
datasets across cell types (n = 2 biological replicates). j, Representative plot of 
normalized ChIP–Seq signal for RPC1 ChIP, K4me3 ChIP and RNA-Seq signal 
surrounding the tRNA-Arg-TCT-4-1 and CADM3 genes in hiPSC and NPC as  
well as neurons. WT, wild-type; edit, CRISPR-edited. Source numerical data  
are provided.
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GC-rich sequences and polyA stretches in 5′ flanking regions drive 
the predictive ability of tRNet for housekeeping tRNAs (Fig. 5g). 
Consistent with this, gene activity predictions based on chromatin 
state have suggested a regulatory role for GC content around tRNA 
loci43, whereas a polyA stretch may enhance DNA binding by TFIIIB 
through its TATA-binding protein subunit. By contrast, the upstream 
regions of inactive genes were enriched for polyT stretches (Extended 
Data Fig. 6g), which constitute Pol III termination signals that inhibit 
tRNA transcription in vitro7. To experimentally test whether tRNA 5′ 

flanking sequences can alter Pol III binding, we inserted the 100-bp 
sequence preceding tRNA-Pro-TGG-1-1 (GC content of 30%) directly 
upstream of tRNA-Pro-TGG-2-1 (GC content of 60%) in hiPSC using 
CRISPR–Cas9. The RPC1 and BRF1 ChIP signals were reproducibly 
decreased at tRNA-Pro-TGG-2-1 in NPC harbouring this edit (Fig. 5h and 
Extended Data Fig. 6h), corroborating the predictions from tRNet. 
Collectively, our data indicate a combinatorial effect of intragenic 
and 5′ flanking sequence features in determining Pol III occupancy 
at individual human tRNA genes.
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tRNA-Arg-TCT-4-1 is co-regulated with CADM3 in neurons
The tRNA-Arg-TCT-4-1 gene, which is upregulated in neurons, repre-
sented a rare case of strong selectivity given the significant decrease 
in RPC1 occupancy at all other tRNA genes in comparison with hiPSC 
(Fig. 4f). It was classified as a housekeeping gene based on the presence 
of a significant RPC1 ChIP peak in consensus sets for all cell types (Sup-
plementary Table 2), suggesting that it is also active in non-neuronal 
cells. Given that its A- and B-box sequences are identical to those 
in other tRNA-Arg-UCU isodecoders, we investigated whether its 
genomic context drives increased expression in neurons. The human 
tRNA-Arg-TCT-4-1 locus is >2.25 Mbp from other tRNA genes but it is 
30 kbp from the TSS of CADM3, whose expression is particularly high 
in neuronal cells in the brain and eye61 (Human Protein Atlas, https://
www.proteinatlas.org/). The genomic co-localization of CADM3 and 
tRNA-Arg-TCT-4-1 is conserved across vertebrates and the levels of 
CADM3 mRNA mirrored the tRNA-Arg-TCT-4-1 expression pattern we 

observed during hiPSC differentiation, with a strong upregulation 
specifically in neurons (Fig. 5i and Extended Data Fig. 1h).

As very few tRNA genes in mice and humans are in locations with 
conserved synteny like tRNA-Arg-TCT-4-1 (refs. 6,15,62), we thus con-
sidered that tRNA-Arg-TCT-4-1 could overlap with a distal cis-regulatory 
element of CADM3. Comparison of the tRNA-Arg-TCT-4-1 loci in mice 
and humans revealed a striking conservation not only of the tRNA 
gene body but also of a 140-bp region upstream (99% sequence iden-
tity; Extended Data Fig. 7a). Inspection of the GeneHancer database 
revealed that a neuron-specific in vivo-transcribed enhancer overlap-
ping human tRNA-Arg-TCT-4-1 has been predicted based on cap analysis 
of gene expression (CAGE) data from the FANTOM5 panel of samples, 
with CADM3 as one of its potential targets63,64 (Fig. 5j). In accordance 
with enhancer-based regulation, the CADM3 mRNA levels were very low 
in hiPSC and NPC despite a high H3K4me3 ChIP signal at the TSS of the 
gene (Fig. 5j), which could be due to Pol II pausing. Pol II has indeed been 
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Fig. 6 | Diminished mTORC1 signalling in differentiated cells triggers 
MAF1-dependent selective tRNA gene repression. a, Immunoblots of MAF1, 
phospho-S6K1 (S6K1-P) and phospho-4E-BP1 (4E-BP1-P) in hiPSC, NPC, neurons 
and CM (n = 3 biological replicates). Samples from both untreated and Torin 
1-treated HEK293T cells (250 nM; 1 h) served as controls for mTOR inhibition. 
b, Immunoblot of a Phos-tag gel for MAF1 in hiPSC, NPC and hiPSC treated with 
10 nM rapamycin for 8 h (n = 2 biological replicates). Vinculin (VCL) served 
as a loading control. c, Immunoblots of MAF1 in CRISPRi lines carrying an 
sgRNA targeting MAF1. Gene knockdown was induced by the addition of 2 µM 
doxycycline (Dox) for 3 (hiPSC; top) or 6 d (NPC; bottom). For the hiPSC>NPC 
samples (middle), 2 µM Dox was added to MAF1 sgRNA-containing hiPSC for 3 d, 
followed by NPC derivation under continuous Dox treatment (n = 2 biological 
replicates). d, MA plots (generated by DiffBind) of spike-in-normalized RPC1 
counts over tRNA features (±125 bp) versus the log2-transformed fold change 

for Dox-induced hiPSC (top), hiPSC>NPC (middle) and NPC (bottom) samples 
carrying an sgRNA targeting MAF1 relative to uninduced controls (n = 2 biological 
replicates for each cell type). Significantly higher and lower occupancies 
(FDR ≤ 0.05) are shown in green and purple, respectively. e, Heatmap of RPC1 
ChIP–Seq occupancy changes following MAF1 depletion by inducible CRISPRi 
(+Dox) relative to uninduced controls (−Dox). RPC1 ChIP–Seq read counts 
over extended tRNA features (±125 bp; left). Normalized signal, accounting 
for estimated library sizes, was generated from these counts scaled to RPM. 
DiffBind differential occupancy analysis using spike-in normalization for 
induced samples relative to the corresponding uninduced controls reported as 
the log2-tranformed fold change (right; n = 2 biological replicates for each cell 
type and condition; FDR-adjusted P ≤ 0.05). f, Model of selective tRNA expression 
following hiPSC differentiation. Rep, replicate. Source numerical data and 
unprocessed blots are provided.
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found in a paused state at the Cadm3 promoter in NPC from the devel-
oping mouse cortex, with pausing relieved in their daughter neurons65. 
Neuron-specific CADM3 enhancer activation could thus potentiate Pol 
III transcription of the overlapping tRNA-Arg-TCT-4-1 by establishing a 
permissive chromatin state, which would account for the exceptionally 
high levels of tRNA-Arg-UCU-4 in the central nervous system34. Overall, 
55 human tRNA genes overlap with predicted enhancers64, although 
only half of these enhancers (27) are transcribed based on FANTOM5 
CAGE (Supplementary Table 3). Among other tRNA genes overlapping 
transcribed enhancers, tRNA-Lys-TTT-3-1 and tRNA-Lys-TTT-3-2 may also 
be co-regulated with enhancer targets in NPC and neurons (Extended 
Data Fig. 7b) but this seems to be a rare regulatory mechanism based 
on our dataset.

Selective tRNA gene repression is not driven by RPC7α loss
We investigated whether the selective repression of a tRNA gene subset 
following differentiation is linked to changes in Pol III composition. The 
human Pol III complex comprises 17 subunits66, one of which (RPC7) 
has two isoforms (RPC7α and RPC7β) encoded by two gene paralogues 
(POLR3G and POLR3GL). High RPC7α levels are a hallmark of embryonic 
stem cells and cancer; in healthy differentiated cells, RPC7α is largely 
replaced by RPC7β67–70. Accordingly, the levels of POLR3G mRNA and 
RPC7α protein were strongly decreased in NPC and nearly undetect-
able in neurons and CM (Extended Data Fig. 8a,b). The switch from 
RPC7α to RPC7β in Pol III thus coincides temporally with selective tRNA 
repression (Fig. 4d). We identified 294 consensus tRNA peaks in RPC7α 
ChIP–Seq from hiPSC, 292 of which were shared with RPC1 consensus 
peaks (Extended Data Fig. 8c). In contrast to 200 of 205 housekeep-
ing tRNA genes (98%), only 93 of 194 repressed tRNA loci (48%) had 
significant RPC7α peaks (Extended Data Fig. 8d,e), indicating that 
RPC7α-containing Pol III is not preferentially enriched at these loci. 
We also found no significant changes in the RPC1 ChIP signal at tRNA 
genes in hiPSC depleted for RPC7α by inducible CRISPR interference71 
(CRISPRi; Extended Data Fig. 8f,g), indicating that selective tRNA gene 
repression following differentiation does not result from RPC7α loss.

Selective tRNA repression correlates with MAF1 activation
We next focused on the Pol III repressor MAF1, which is kept inac-
tive through phosphorylation by mTORC1 (refs. 72,73). Following a 
decrease in mTORC1 signalling triggered by low nutrient availability, 
MAF1 becomes dephosphorylated and inhibits Pol III (ref. 74). The gel 
migration pattern of MAF1 suggested that it is mostly phosphorylated 
in hiPSC (Fig. 6a), consistent with the requirement for high mTORC1 
activity for pluripotency maintenance75. mTORC1 activity (measured 
by S6K1 and 4E-BP1 phosphorylation) was strongly diminished in dif-
ferentiated cells, consistent with previous studies of human embryonic 
stem cell differentiation76 and mouse neurogenesis77. In agreement with 
this, MAF1 from differentiated cells migrated faster, which is indica-
tive of phosphorylation loss. Interestingly, a small fraction of MAF1 
remained partially phosphorylated when hiPSC were treated with the 
mTORC1 inhibitor rapamycin and MAF1 from NPC exhibited a similar 
pattern (Fig. 6b), indicating that phosphorylation at one or more sites in 
MAF1 (S60, S68 and S75)72 may be less sensitive to this drug. Diminished 
mTORC1 activity in differentiated cells thus activates MAF1 by altering 
its phosphorylation status.

To experimentally test whether MAF1 activation mediates selec-
tive tRNA gene repression, we used inducible CRISPRi to perform 
MAF1 knockdown in hiPSC and NPC as well as before NPC derivation 
from hiPSC. MAF1 depletion did not alter the levels of RPC1 (Fig. 6c) 
and only modestly increased Pol III occupancy at 39 tRNA genes in 
hiPSC. By contrast, more than 100 loci had significantly higher RPC1 
ChIP signal strength in NPC derived in the absence of MAF1 (n = 109) 
or depleted of MAF1 after derivation (n = 110), with effect sizes that 
were primarily >fourfold, and up to approximately 30-fold, higher 
(Fig. 6d). Remarkably, nearly all of these genes belong to the set of 

tRNAs that are repressed following differentiation (Fig. 6e). None of 
the inactive tRNA genes gained significantly more RPC1 ChIP signal 
in MAF1-depleted NPC and only eight did so in hiPSC (Fig. 6e). The 
RPC1 ChIP signal strength at housekeeping tRNA genes also remained 
largely unaffected by MAF1 depletion. These data indicate that cell 
type-specific human tRNA repertoires are established in a MAF1- and 
mTORC1-dependent manner (Fig. 6f).

Discussion
Despite their crucial importance for faithful and efficient mRNA decod-
ing, the composition of tRNA pools in human cells and their regulation 
have remained poorly defined due to technical limitations. Understand-
ing this regulation is critical for identifying the molecular triggers of 
human diseases caused by tRNA dysregulation3,78 as well as for the 
design of effective mRNA- and tRNA-based therapeutics79,80. By apply-
ing orthogonal methods in hiPSC-based models, we show that despite 
extensive remodelling of tRNA repertoires, the levels of mature tRNAs 
with specific anticodons are maintained largely stable across diverse 
human cell types. This is mediated by constitutively high transcription 
of one-third of the predicted human tRNA genes, which we define here 
as housekeeping. These genes have distinct intragenic promoters and 
5′ flanking sequences, and their products comprise the most abundant 
mature transcripts in each tRNA anticodon family. Housekeeping tRNA 
genes are largely resistant to MAF1-mediated Pol III repression, which 
we identify as the mechanism for silencing low-occupancy tRNA loci 
on differentiation. We propose that the maintenance of stable tRNA 
anticodon pools and global codon usage across cell types ensures 
consistent decoding rates throughout development, independently 
of cell identity.

By combining Pol III ChIP–Seq with high-resolution tRNA quantifi-
cation in homogeneous populations of distinct isogenic and untrans-
formed human cell types, we found that differences in Pol III occupancy 
explain nearly all of the variation in mature tRNA levels (r2 = 0.9). This 
extraordinary concordance between two completely orthogonal work-
flows further underscores the quantitative nature of tRNA abundance 
measurements by mim-tRNAseq21,22. Whereas Pol III ChIP–Seq requires 
highly specific antibodies that are unavailable for most organisms, 
profiling mature tRNA repertoires with mim-tRNAseq is much more 
broadly applicable and we anticipate that it will help uncover other 
fundamental aspects of tRNA regulation.

The distinct A and B boxes and 5′ flanking sequence motifs of 
housekeeping tRNA genes may favour Pol III recruitment or facilitate 
its recycling at these loci, enabling their escape from MAF1-mediated 
repression during differentiation. A similar mechanism could 
account for the protection of some highly transcribed tRNA genes 
from stress-induced MAF1 inhibition in yeast81, mice82 and human 
fibroblasts83. The broader tRNA repertoires we found transcribed in 
cells with high mTORC1 activity, which is a hallmark of pluripotency 
but also of many cancers29, result in tRNA pools with a more diverse 
isodecoder composition. However, tRNA isodecoder diversity has 
surprisingly minor effects on decoding speed. We instead found that 
the relative abundance of tRNA anticodon families, which remains 
largely unchanged across cell types, determines translation elonga-
tion rates at different codons. In physiological contexts, a stable tRNA 
anticodon supply during development—maintained by housekeeping 
tRNA gene transcription—would minimize the potential for ribosome 
errors and protein misfolding that could result from decoding rate 
fluctuations84,85.

Why are active tRNA gene sets restricted during differentiation? 
Given that tRNAs are highly abundant, their synthesis is energetically 
costly and restriction of Pol III to housekeeping tRNA genes via MAF1 
may help maintain tRNA anticodon pools in differentiated cells while 
conserving resources. In line with this, Maf1−/− mice are viable but have a 
lean phenotype and increased energy expenditure86. MAF1 plays a role 
in mouse adipogenesis87 and osteoblast differentiation88, but whether 
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this is through tRNA repertoire reprogramming is difficult to dissect, 
given that the protein also inhibits Pol III-mediated transcription of 5S 
ribosomal RNA5. This coupling of rRNA and tRNA biogenesis may also 
serve to maintain the overall stoichiometry between ribosomes and 
tRNA molecules in cell types with distinct global translation demands.

Despite the strong correlation between H3K4me3 and RPC1 ChIP 
signals at tRNA genes in our datasets and previous studies46, we found 
no clear association of tRNA gene activity with Pol II transcription of 
nearby coding genes. However, in very rare cases—such as we propose 
for tRNA-Arg-TCT-4-1—an overlap with an enhancer element may boost 
the expression of an individual tRNA gene in specific cell contexts. 
Long-range regulatory DNA interactions, rather than linear distance 
to Pol II genes, could thus modulate the expression of specific tRNA 
genes in defined cell types. We found some evidence for a similar mode 
of regulation for tRNA-Lys-TTT-3-1 and tRNA-Lys-TTT-3-2 in NPC and neu-
rons, and it remains possible that other tRNA loci we found to overlap 
with predicted enhancers may be differentially expressed in cellular 
contexts where these enhancers are active.
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Methods
Cell culture and hiPSC differentiation
HEK293T/17 (American Type Culture Collection, CRL-11268) and Lenti-X 
293T (Takara Bio, 632180) cells were cultured in DMEM high-glucose 
medium supplemented with 10% fetal calf serum (FCS) at 37 °C with 
5% CO2. The HPSI0214i-kucg_2 and HPSI0214i-wibj_2 reference hiPSC 
lines23 were obtained from the European Collection of Authenticated 
Cell Cultures (catalogue number 77659901) and cultured in mTeSR 
Plus on Geltrex-coated plates at 37 °C with 5% CO2. Neurons and NPC 
were derived from HPSI0214i-kucg_2 cells using small molecules as 
previously described32,33. For NPC differentiation, hiPSC were cultured 
to 90% confluency and cut by scratching a chequered pattern into the 
dish with a cannula, followed by incubation with collagenase IV for 
10–15 min at 37 °C. Cell clusters were carefully scratched off the plate, 
transferred to a 15 ml tube containing Neurobasal (N2B27) medium 
(Gibco, 21103049)—DMEM/F12 (Gibco, 21331020) 50:50, 0.5×N2 
(Thermo Fisher Scientific, 17502048), 0.5×B27 (Thermo Fisher Scien-
tific, 12587010), 2 mM GlutaMAX (Gibco, 35050061)—and pelleted by 
gravity. Cell clusters were washed once with N2B27 medium and trans-
ferred into NPC-induction medium (N2B27 with 200 µM ascorbic acid 
(Sigma-Aldrich, A4403), 3 µM CHIR99021 (Axon Medchem, Axon1386), 
0.5 µM purmorphamine (Santa Cruz Biotechnology, sc-202785A), 
150 nM dorsomorphin (Absource, S7306) and 10 µM SB431542 (Biomol, 
Cay12031)) with 5 µM ROCK inhibitor (Y-27632; Stemcell Technologies, 
72305) in a sterile dish without coating, to allow embryoid body forma-
tion, and incubated at 37 °C with 5% CO2. The medium was exchanged 
every 2 d with NPC-induction medium without Y-27632. On day six, the 
embryoid bodies were dissociated into single cells by pipetting and 
plated into a Geltrex-coated well in NPC expansion medium (N2B27 with 
200 µM ascorbic acid, 3 µM CHIR99021 and 0.5 µM purmorphamine). 
The medium was changed every other day. To remove non-NPC cells, 
a sequential digest was performed during the first passages using 
Accutase. Standard passaging was performed as for hiPSC single-cell 
passaging every 5 d at a ratio of 1:10.

For the differentiation of NPC to neurons33, cells were singularized 
with Accutase and 1 × 106 cells were seeded into a six-well plate contain-
ing patterning medium (N2B27 with 200 µM ascorbic acid, 1 µM retinoic 
acid (Sigma-Aldrich, R2625), 0.5 µM purmorphamine and 10 ng ml−1 of 
both GDNF and BDNF (Peprotech, 450-10 and 450-02)). The cells were 
cultured for 6 d with a medium change every other day. On day six, the 
medium was changed to maturation medium (MM; N2B27 with 200 µM 
ascorbic acid, 100 µM dbcAMP (Sigma-Aldrich, D0627), 5 ng ml−1 GDNF 
and BDNF, and 1 ng ml−1 TGF-β3 (Peprotech, AF-100-36E)) with 5 ng µl−1 
Activin A (Life Technologies, PHG9014). After 2 d, the medium was 
exchanged with MM without Activin A. The cells were maintained in 
plates for another 10 d, with medium exchanges every 2–3 d. On day 16, 
the cells were detached with Accutase, resuspended in MM, pelleted by 
centrifugation for 5 min at 200g and transferred to a new plate. CompE 
(0.1 µM; Merck, 565790) was added to the medium on day 19 to enhance 
neuronal maturation and the cells were harvested on day 21.

Cardiomyocytes were derived from HPSI0214i_kucg-2 hiPSC as 
previously described30,31, with some modifications. Accutase was used 
to dissociate hiPSC into single cells, which were then seeded in day 0 dif-
ferentiation medium (KO-DMEM (Gibco, 10829-018); 2 mM l-glutamine 
(Gibco, 25030-024); insulin, transferrin and selenious acid (5 µg ml−1 
each; ITS; Corning, 354351); 10 ng ml−1 FGF2 (Peprotech, 100-18B-250); 
1 µM CHIR 9920 (Axon, 1386); 1 ng ml−1 BMP-4 (R&D, 314-BP-010); 
5 ng ml−1 Activin A (Life Technologies, PHG9014) and 10 µM Y-27632 
on Matrigel-coated plates. The medium was changed to transferrin/
selenium medium (KO-DMEM, 2 mM l-glutamine, 5.5 µg ml−1 human 
transferrin (Sigma-Aldrich, TS8158-100mg), 6.7 ng ml−1 sodium selenite 
(Sigma-Aldrich, 214485) and 250 µM ascorbic acid (Sigma-Aldrich, 
A4403-100mg)) after 1 d. On days 2 and 3, the medium was replaced 
with transferrin/selenium medium supplemented with 0.2 µM 
WNT-inhibitor C59 (Tocris, 5148). The medium was exchanged daily 

until day 9. To enrich for CM, the cells were then starved of glucose for 
1 d in transferrin/selenium medium minus glucose medium (DMEM 
without glucose (Gibco, A13320-01), 2 mM l-glutamine, 5.5 µg ml−1 
human transferrin, 6.7 ng µl−1 sodium selenite, 250 µM ascorbic acid 
and 4 mM lactic acid (Sigma L4263-100ml))31. On day 10, the cells were 
trypsinized with Accutase and plated in CM-MM medium (KO-DMEM, 
2% FCS (Gibco, 16000-044), 2 mM l-glutamine and 10 µM Y-27632 on 
Matrigel-coated wells. The following day the medium was replaced 
with fresh CM-MM without Y-27632, which was exchanged every 2 d 
until the cells were harvested on day 15.

HEK293T/17 and Lenti-X 293T cells were cultured (at 37 °C with 
5% CO2) in DMEM high-glucose medium supplemented with 10% FCS 
and passaged using 0.25% trypsin in EDTA every other day at a ratio 
of 1:10–1:20.

Generation of an inducible CRISPRi hiPSC line
HPSI0214i_kucg-2 cells were engineered to express KRAB-dCas9 
from a doxycycline-inducible promoter at the AAVS1 locus71 using 
pAAVS1-PDi-CRISPRn (a gift from B. Conklin; Addgene, plasmid 
73500; http://n2t.net/addgene:73500; RRID: Addgene_73500). The 
cultures were selected with 100 µg ml−1 G418 until stable colonies 
originating from single cells formed. The colonies were picked and 
screened for heterozygous insertion by PCR using two primers 
flanking the AAVS1 locus (5′-CGAGAGCTCAGCTAGTCTTC-3′ and 
5′-CTCTCCCTCCCAGGATCC-3′) and an additional primer binding the 
insert (5′-GTTCATTCAGGGCACCGGAC-3′). KRAB-dCas9 expression in 
positive clones was assessed by flow cytometry and immunoblotting 
after the addition of 2 µM doxycycline. Genome integrity was verified 
by G-band analysis of expanded clones.

CRISPR–Cas9 genome editing
CRISPR RNA and single-stranded oligodeoxynucleotide templates were 
obtained from IDT. Guide RNAs were assembled by annealing the CRISPR 
RNA (5′-UGUGGGCCAAGGCUAGGGAGGUUUUAGAGCUAUGCU-3′ 
for the Pro-TGG-2 gene body edit and 5′-UUGCUCAGCAGAUGGCU 
CGUGUUUUAGAGCUAUGCU-3′ for the Pro-TGG-2 upstream region 
edit) with trans-activating CRISPR RNA (IDT) in equimolar ratios at 
95 °C for 5 min. Ribonucleoprotein complex was assembled by mixing 
100 pmol guide RNA with 50 pmol Alt-R HiFi Cas9 (IDT) and incubated 
at room temperature for 20 min. HPSI0214i_kucg-2 cells were dissoci-
ated into single cells using Accutase and Nucleofected with ribonu-
cleoprotein complex and HDR donor oligonucleotide in P3 solution 
(Lonza) using the CA137 programme in a Nucleocuvette strip. The cells 
were re-plated in mTeSR Plus supplemented with 1:10 CloneR (Stem-
cell Technologies, 05888). The medium was exchanged with mTeSR 
Plus every 2 d. Colonies were picked and expanded, and homozygous 
edited clones were identified by PCR amplification of genomic DNA 
and Sanger sequencing.

CRISPRi sgRNA design
Single guide RNAs (sgRNAs) were designed to target the TSS of genes 
in the GENCODE v19 annotation using an adapted workflow of the 
CRISPRiaDesign protocol (https://github.com/mhorlbeck/CRISPRia-
Design). To incorporate information about single nucleotide poly-
morphisms (SNPs) in the HPSI0214i_kucg-2 genome, we used GATK 
haplotype calls for the cell line (ftp://ftp.sra.ebi.ac.uk/vol1/ERZ447/
ERZ447992/) and extracted variant sites only using gvcftools extract_
variants v0.17.0. The resulting genomic variant call format (VCF) file 
was indexed and genotypes were called using GATK GenotypeGVCFs 
v4.1.0.0. From this, only SNPs were retained so as to preserve genomic 
context and position information between GRCh37 and our custom 
genome. This was achieved using GATK SelectVariants v4.1.0.0 with 
the -select-type SNP parameter. We then replaced nucleotides in the 
reference GRCh37 genome with the called genotype SNPs by generat-
ing a sequence dictionary from the reference genome using Picard 
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CreateSequenceDictionary v2.17.10 and supplying the SNP VCF to GATK 
FastaAlternateReferenceMaker v4.1.0.0. To train an elastic net linear 
regression model for sgRNA activity predictions, this custom genome 
was used in combination with other supplied training data from the 
CRISPRia pipeline, including sgRNA activity scores and TSS predic-
tions (https://github.com/mhorlbeck/CRISPRiaDesign/tree/master/
data_files) and our own ATAC–Seq data from HPSI0214i-kucg_2 cells 
as a proxy for chromatin accessibility. After activity score prediction, 
off-targets were predicted per sgRNA as described89.

CRISPRi knockdown
POLR3G- and MAF1-targeting sgRNAs (5′-GGACTCGCCGGAGC 
GCTCTG-3′ and 5′-GGTGCCGGCCGGCAAGGAAA-3′) were cloned 
in pU6-sgRNA EF1α-Puro-T2A-GFP by Gibson assembly. This plas-
mid was constructed by replacing BFP with GFP in pU6-sgRNA 
EF1α-Puro-T2A-BFP (a gift from J. Weissman; Addgene plasmid 60955; 
http://n2t.net/addgene:60955; RRID:Addgene_60955). Lentivirus 
stocks were produced by co-transfection of the resulting plasmid 
with packaging plasmids (gifts from D. Trono; pMDLg/pRRE, Addgene, 
plasmid 12251, http://n2t.net/addgene:12251, RRID:Addgene_12251; 
pRSV-Rev, Addgene, plasmid 12253, http://n2t.net/addgene:12253, 
RRID:Addgene_12253; and pMD2.G, Addgene, plasmid 12259, http://
n2t.net/addgene:12259, RRID:Addgene_12259) into Lenti-X 293T cells 
with TransIT-Lenti transfection reagent (Mirus, MIR6603) following the 
manufacturer’s instructions. Viral supernatant was harvested 48–72 h 
after transfection, filtered through a 0.45 μm polyvinylidene fluoride 
syringe filter and then precipitated overnight with Lentivirus precipita-
tion solution (Alstembio, VC125) at 4 °C. Virus stocks were concentrated 
tenfold in cold PBS, aliquoted and stored at −80 °C.

Lentiviral transduction of hiPSC was performed by adding thawed 
lentivirus stock mixed with fresh medium to plates, followed by an 
incubation of 10 min at 37 °C with 5% CO2 and the addition of trypsinized 
cells. The cells were incubated with lentivirus for 2 d before splitting and 
selection with 2.5 μg ml−1 puromycin for 2–3 d. NPC were transduced as 
per the protocol for hiPSC, except that the incubation with lentivirus 
was reduced to 1 d and performed in the absence of doxycycline. The 
cells were then selected with 2.5 μg ml−1 puromycin in the presence or 
absence of doxycycline until >80% of the cells were GFP-positive.

RNA isolation
Cells were lysed in lithium dodecyl sulfate (LiDS)/LET buffer (5% LiDS in 
20 mM Tris, 100 mM LiCl, 2 mM EDTA, 5 mM dithiothreitol (DTT) pH 7.4 
and 100 μg ml−1 proteinase K). The lysates were incubated at 60 °C for 
10 min, pushed ten times through a 1 ml syringe with a 26 G needle 
and mixed by vortexing. Two volumes of cold acid phenol (pH 4.3), 
1/10 volume 1-bromo-3-chloropropane and 50 µg glycogen (Thermo 
Fisher Scientific, AM9510) were added. The samples were mixed vig-
orously by vortexing, followed by centrifugation at 10,000g and 4 °C. 
The aqueous phase was transferred to a new tube and the phenol and 
1-bromo-3-chloropropane extraction was repeated. RNA was then 
precipitated from the aqueous phase by the addition of three volumes 
of 100% ethanol and incubation at −20 °C for 30 min. The pellets were 
washed with 80% ethanol, air-dried and resuspended in RNase-free 
water. The RNA concentration was measured using a Nanodrop system 
and the samples were stored at −80 °C.

Northern blotting
For each sample, 0.5 µg total RNA was separated on denatur-
ing gels (10% polyacrylamide in 7 M urea and 1×TBE). The RNA was 
transferred to Immobilon NY+ membranes (Millipore) in 1×TBE at 
4 mA cm−2 for 40 min using a TransBlot Turbo apparatus (Bio-Rad) 
and crosslinked at 0.04 J in a Stratalinker ultraviolet light crosslinker. 
The membranes were incubated at 80 °C for 1 h and pre-hybridized 
at 55 °C for 4 h in hybridization buffer (20 mM Na2HPO4 pH 7.2, 
5×SSC, 7% SDS, 2×Denhardt’s solution and 40 μg ml−1 sheared 

salmon sperm DNA). This was followed by overnight hybridiza-
tion with 10 pmol 5′-end 32P-labelled probes (tRNA-Gly-CCC-2, 
5′-CGGGTCGCAAGAATGGGAATCTTGCATGATAC-3′; tRNA-Arg-UCU-4, 
5′-CGGAACCTCTGGATTAGAAGTCCAGCGCGCTCGTCC-3′ and 
tRNA-Asn-GUU-1, 5′-CGTCCCTGGGTGGGATCGAACC-3′) in hybridiza-
tion buffer. Finally, the membranes were washed three times in 25 mM 
Na2HPO4 pH 7.5, 3×SSC, 5% SDS and 10×Denhardt’s solution, washed 
once in 1×SSC and 10% SDS, and exposed to PhosphorImager screens 
scanned on a Typhoon FLA 9000 (GE Healthcare). The band intensity 
was quantified using ImageJ.

Immunoblotting
Cells were lysed in RIPA buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% 
NP-40, 0.5% sodium deoxycholate and 0.1% SDS) supplemented with 
10 µg ml−1 aprotinin, 20 µM leupeptin, 2.5 µM pepstatin A, 0.5 mM 
4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and 1×phos-
phatase inhibitor cocktail (Cell Signaling Technologies, 5870). The 
protein concentration was determined using a Pierce BCA protein 
assay kit (Thermo Fisher Scientific, 23225). For each sample, 20 μg total 
protein was resolved by SDS–PAGE on 10% gels supplemented with 0.5% 
2,2,2-trichloroethanol (Sigma, T54801) or on pre-cast 4–12% bis-Tris 
polyacrylamide gels (Life Technologies) in Bolt MES SDS running buffer 
(Invitrogen, B0002). Total protein stained with 2,2,2-trichloroethanol 
was imaged by ultraviolet light illumination on a ChemiDoc system 
(Bio-Rad). The proteins were then transferred to a nitrocellulose mem-
brane (Amersham, 10600015). For visualizing total protein in pre-cast 
gels, the membranes were stained with Ponceau S solution (0.5% Pon-
ceau S and 1% acetic acid) for 3 min at room temperature with gentle 
shaking and imaged on a ChemiDoc system (Bio-Rad) after rinsing 
with distilled water. The membranes were blocked in 5% milk in PBS-
0.1% Tween-20 for 1 h, followed by overnight incubation at 4 °C with 
primary antibodies. The primary antibodies used for immunoblot-
ting were anti-phospho-p70 S6 kinase (1:1,000; Cell Signaling Tech-
nologies, 9206S), rabbit anti-phospho-4E-BP1 (1:1,000; Cell Signaling 
Technologies, 2855T), mouse anti-Pol III RPC32/RPC7α (1:1,000; Santa 
Cruz Biotechnology, sc-21754), mouse anti-MAF1 (1:1,000; Santa Cruz 
Biotechnology, sc-515614 X), mouse anti-POLR3B/RPC2 (1:1,000; Santa 
Cruz Biotechnology, sc-515362), rabbit anti-POLR3A/RPC1 (1:1,000; 
Cell Signaling Technologies, 12825) and rabbit anti-vinculin (1:1,000; 
Cell Signaling Technologies, 13901). The membranes were then incu-
bated with horseradish peroxidase (HRP)-labelled secondary antibod-
ies (1:4,000; anti-rabbit IgG–HRP or anti-mouse IgG–HRP; Dianova, 
111-035-003 and 115-035-003, respectively) at room temperature for 
1 h. Proteins were visualized by chemiluminescence using SuperSignal 
west pico PLUS (Thermo Fisher Scientific, 34577) and imaged on an 
iBright system (Thermo Fisher Scientific).

For S6K1 and 4E-BP1 immunoblotting, the membranes 
were first probed with phospho-specific antibodies (1:1,000; 
anti-phospho-4E-BP1 and anti-phospho-p70 S6 kinase (T389); Cell Sign-
aling Technologies, 2855T and 9206S, respectively). The membranes 
were stripped by two rounds of incubation in 25 ml Restore western 
blot stripping buffer (Thermo Fisher Scientific, 21059) for 15 min at 
room temperature with gentle shaking. This was followed by another 
round of blocking and the membranes were re-probed with anti-4E-BP1 
(1:2,000; Cell Signaling Technologies, 9644) and anti-p70 S6 kinase (1: 
2,000; Cell Signaling Technologies, 2708T).

For Phos-tag immunoblotting, 20 µg total protein from each 
sample was mixed with 4×Laemmli sample buffer (Bio-Rad, 161-0747) 
supplemented with 25 mM DTT and boiled for 10 min at 95 °C. The 
denatured samples were run on Phos-tag gels (8% acrylamide in bis 
solution 29:1; 0.375 M Tris–HCl, pH 8.8, 20 µM Phos-tag (Wako, AAL-
107) and 40 µM MnCl2) in 1×Tris/glycine/SDS running buffer (Bio-Rad, 
1610732). The gels were washed twice with gentle shaking in transfer 
buffer (25 mM Tris, 192 mM glycine and 10% methanol) containing 
1 mM EDTA (10 min each wash), followed by two washes (10 min each 
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wash) in transfer buffer without EDTA. The proteins were transferred 
to polyvinylidene fluoride membranes (Amersham, 10600021) over-
night in 25 mM Tris, 192 mM glycine and 10% methanol at 35 V and room 
temperature. The membrane was blocked in 5% milk in PBS-0.1% Tween-
20 for 1 h, followed by overnight incubation with mouse anti-MAF1 
(1:1,000; Santa Cruz Biotechnology, sc-515614 X) at 4 °C and anti-mouse 
IgG–HRP (1:4,000; Dianova, 115-035-003) at room temperature for 1 h. 
The proteins were visualized by chemiluminescence using SuperSignal 
West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, 
34094) and imaged on an iBright system.

Immunostaining
Cells were cultured on glass-bottomed dishes (ibidi, 80827). For stain-
ing, the cells were washed with PBS and fixed in 3.7% formaldehyde 
for 10 min at room temperature. The formaldehyde was exchanged 
stepwise with PBS-0.02% Tween-20, followed by three complete washes 
with PBS. NPC and hiPSC were permeabilized with 0.5% Triton X-100 
in PBS0.02% Tween-20 for 10 min and blocked for 1 h in blocking solu-
tion (3% BSA and 0.1% Triton X-100 in PBS). The cells were incubated 
overnight at 4 °C with the primary antibody diluted in blocking solution 
(POU5F1 C-10, Santa Cruz Biotechnology, sc-5279, 1:400; SOX2 E-4, 
Santa Cruz Biotechnology, sc-365823, 1:200; NANOG P1-2D8, deposited 
to the Developmental Studies Hybridoma Bank (DSHB) by Common 
Fund Protein Capture Reagents Program (DSHB Hybridoma Product 
PCRP-NANOGP1-2D8), 1:200; PAX6, Abcam ab5790, 1:200; Nestin, 
R&D Systems, MAB1259, 1:200). After three washes with PBS-0.02% 
Tween-20, the cells were incubated with secondary antibody diluted 
in blocking solution for 1 h at room temperature (goat anti-mouse–
Alexa Fluor 488, 1:2,000; goat anti-rabbit–Alexa Fluor 488, 1:2,000 
or goat anti-mouse–Alexa Fluor 633, 1:500; Thermo Fisher Scientific, 
A-11001, A-11034 and A-21052, respectively). The cells were washed 
another three times in PBS-0.02% Tween-20 before imaging, and 
4,6-diamidino-2-phenylindole (DAPI) was added during the second 
wash step (1:1,000). Neurons were permeabilized for 10 min in PBS-0.7% 
Tween-20 and blocked for 1 h in neuron blocking solution (1% BSA, 0.1% 
Triton X-100 and 10% FCS in PBS). The cells were washed once in 0.1% 
BSA in PBS and incubated overnight with the primary antibody diluted 
in PBS containing 1% BSA at 4 °C (anti-MAP2, 1:1,000 and anti-CHAT, 
1:200; Abcam, ab92434 and ab6168, respectively). After three washes 
in PBS containing 0.1% BSA, the cells were incubated with the secondary 
antibody diluted in PBS containing 1% BSA for 1 h at room temperature 
(goat anti-rabbit A633, 1:500 and goat anti-chicken A488, 1:2,000; 
Thermo Fisher Scientific, A-21070 and A-11039, respectively), followed 
by another three washes with 1% BSA in PBS-0.05% Tween-20, with DAPI 
added during the second wash step (1:1,000). Cardiomyocytes were 
blocked and permeabilized in blocking solution (3% BSA and 0.1% Triton 
X-100 in PBS) for 1 h at room temperature. After three washes with PBS-
0.1% Tween-20, the cells were incubated overnight at 4 °C with primary 
antibody (anti-ɑ-actinin-2, Sigma-Aldrich, A7811, 1:800 and anti-cardiac 
troponin T, CT3, deposited to the DSHB by Lin, J. J. -C., 1:5) diluted in 
staining solution (1% BSA and 0.1% Tween in PBS). After three washes 
with PBS0.1% Tween-20, the cells were incubated with the secondary 
antibody (goat anti-mouse–Alexa Fluor 488, Thermo Fisher Scientific, 
A-11001, 1:2,000) and DAPI (1:1,000) diluted in staining solution for 1 h 
at room temperature in the dark. The cells were washed three times in 
PBS-0.1% Tween-20 and imaged in PBS.

RNA-Seq library construction
A total of 250 ng of the same total RNA used for mim-tRNAseq library 
preparation was used for mRNA-Seq library construction with a 
Zymo-Seq RiboFree total RNA library kit (Zymo Research, R3000). 
The libraries were quantified using a Qubit dsDNA HS assay, fragment 
size was determined on an Agilent TapeStation and the libraries were 
sequenced for 120 cycles on an Illumina NovaSeq platform, generating 
>21 × 106 reads per library.

tRNA-Seq library construction
The tRNASeq libraries were prepared using the mim-tRNAseq work-
flow21,22. Briefly, total RNA from two biological replicates for each cell 
line was mixed with synthetic Escherichia coli tRNA-Lys-UUU-CCA and 
E. coli tRNA-Lys-UUU-CC at a 3:1 ratio, followed by dephosphorylation 
with T4 PNK (NEB, M0201S) and ethanol precipitation. The RNA samples 
were resolved on denaturing 10% polyacrylamide, 7 M urea and 1×TBE 
gels. RNA of 60–100 nt in length was recovered by gel excision and elu-
tion from gel slices, followed by ethanol precipitation. The gel-purified 
tRNA was then ligated to pre-adenylated, barcoded 3′-adaptors22 in 
1×T4 RNA ligase buffer, 25% PEG-8000, 20 U Superase In (Thermo 
Fisher Scientific, AM2696) and 1 µl T4 RNA ligase 2, truncated KQ (NEB, 
M0373S). The mix was incubated for 3 h at 25 °C and the ligation prod-
ucts were purified by size selection on a 10% polyacrylamide, 7 M urea 
and 1×TBE gel. Adaptor-ligated tRNA (100 ng) was annealed with 1 µl of 
1.25 µM RT primer (5′-pRNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/
iSp18/GTGACTGGAGTTCAGACGTGTGCTC-3′, where iSp18 is a 18-atom 
hexa-ethyleneglycol spacer) at 82 °C for 2 min, followed by incuba-
tion at 25 °C for 5 min. Reverse transcription was performed with 
500 nM TGIRT (InGex, TGIRT50) in 50 mM Tris–HCl pH 8.3, 75 mM 
KCl, 3 mM MgCl2, 5 mM DTT (from a freshly prepared 100 mM stock), 
1.25 mM dNTPs and 20 U Superase In at 42 °C for 16 h. After reverse 
transcription, NaOH was added to a final concentration of 0.1 M 
and the RNA was hydrolysed by incubating the samples for 5 min at 
90 °C. Complementary DNA products were separated from unex-
tended primer on a 10% polyacrylamide, 7 M urea and 1×TBE gel. 
Regions corresponding to cDNAs that were >10 nt longer than the 
RT primer were excised after SYBR Gold staining. Gel-purified and 
ethanol-precipitated cDNA was incubated for 3 h at 60 °C with Cir-
cLigase ssDNA ligase (Lucigen) in 1×reaction buffer supplemented 
with 1 mM ATP, 50 mM MgCl2 and 1 M betaine. Following enzyme inac-
tivation for 10 min at 80 °C, one-fifth of the circularized cDNA was 
used directly for library construction PCR with a common forward 
(5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC
T∗C-3′) and unique indexed reverse primers (5′-CAAGCAGAAGACGGC
ATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGT∗G-3′; NNNNNN, 
the reverse complement of an Illumina index sequence; asterisk, phos-
phorothioate bond) with KAPA HiFi DNA polymerase (Roche) in 1×GC 
buffer with initial denaturation at 95 °C for 3 min, followed by five cycles 
of 98 °C for 20 s, 62 °C for 30 s and 72 °C for 30 s at a ramp rate of 3 °C s−1. 
The PCR products were purified using a DNA Clean and Concentrator 
5 kit (Zymo Research), quantified with a Qubit dsDNA HS kit (Thermo 
Fisher Scientific, Q32851) and sequenced for 150 cycles on an Illumina 
NextSeq 500 platform, generating >2.5 × 106 reads per library.

ChIP–Seq library construction
Cells cultured in six-well plates were fixed with 0.8% methanol-free 
formaldehyde (Thermo Fisher Scientific, 28906) in DMEM medium for 
10 min at room temperature with gentle shaking, followed by quench-
ing with 0.125 M glycine for 5 min. All buffers in the subsequent steps 
of the protocol were supplemented with cOmplete EDTA-free protease 
inhibitor cocktail (Roche, 1187358000). The cells were washed twice 
with ice-cold PBS and resuspended in Farnham buffer (5 mM PIPES 
pH 8.0, 85 mM KCl and 0.5% IGEPAL-CA 630), followed by snap freezing 
in liquid nitrogen.

Chromatin was isolated and sheared following the NEXSON proto-
col90. Frozen cell pellets were thawed on ice and sonicated for 2 min in 
1 ml tubes (Covaris, 520130) on a Covaris S220 ultrasonicator at peak 
power = 75 W, duty factor = 2% and cycles per burst = 200. Isolated 
nuclei were washed once with Farnham buffer and resuspended in 
shearing buffer (10 mM Tris–HCl pH 8.0, 0.1% SDS and 1 mM EDTA). 
Chromatin was sheared on a Covaris S220 system by sonication for 
9 min (for BRF1 ChIP) or 18 min (for all other ChIP) in 1 ml tubes at peak 
power = 140 W, duty factor = 5% and cycles per burst = 200. The sheared 
chromatin was clarified by centrifugation for 10 min at 16,000g. DNA 
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isolated from 10 µl sheared chromatin was used for size analysis on 
an Agilent TapeStation system; a DNA fragment-size distribution of 
100–800 bp was considered suitable for ChIP. The sheared chromatin 
was snap-frozen and stored at −80 °C. A 10 µl aliquot was used to deter-
mine the DNA concentration using a Qubit dsDNA HS assay. For this, 
crosslinks were reversed by overnight incubation with 0.2 M NaCl at 
65 °C, followed by incubation with 50 µg ml−1 RNase A (Thermo Fisher 
Scientific, EN0531) at 37 °C for 30 min, after which the samples were 
incubated with 200 µg ml−1 proteinase K (Sigma-Aldrich, P2308) at 
65 °C for 1 h. The DNA was purified using a DNA ChIP clean and con-
centrator kit (Zymo Research, D5205) and eluted in 10 µl of 10 mM Tris 
pH 8.5 with 0.1 mM EDTA.

The sheared chromatin was thawed on ice. For the RPC1 ChIP, 5 μg 
chromatin was diluted 1:8 with ChIP Dilution buffer (23 mM Tris–HCl 
pH 8.0, 200 mM NaCl, 2.3 mM EDTA and 1.3% Triton X-100). Magna 
ChIP protein A + G magnetic beads (Merck, 16-663) were blocked with 
5 mg ml−1 BSA in PBS for 2 h at room temperature on a rotating platform 
and resuspended in ChIP dilution buffer. Drosophila melanogaster 
spike-in chromatin (Active Motif, 53083) was added to a final concen-
tration of 0.5% and the chromatin was pre-cleared by incubation with 
10 µl blocked magnetic beads for 1 h at 4 °C on a rotating platform. The 
pre-cleared chromatin was incubated with 5 μg anti-POLR3A/RPC1 (Cell 
Signaling Technologies, 12825) and 0.2 µg Drosophila antibody (Active 
Motif, 61686) overnight at 4 °C on a rotating platform. For the H3K4me3 
and H3K27me3 ChIP, 2 µg pre-cleared chromatin and 5 µl anti-H3K4me3 
(Active Motif, 39159) or anti-H3K27me3 (Millipore, 07-449) was used 
per ChIP and spike-in chromatin was omitted. The samples were then 
incubated with 60 µl blocked magnetic beads for 2 h at 4 °C on a rotat-
ing platform. The beads were washed sequentially with low-salt buffer 
(0.1% SDS, 1% Triton X-100, 2 mM EDTA pH 8.0, 20 mM Tris–HCl pH 8.0 
and 150 mM NaCl), high-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM 
EDTA pH 8.0, 20 mM Tris–HCl pH 8.0 and 500 mM NaCl), lithium chlo-
ride buffer (0.25 M LiCl, 1% IGEPAL-CA 630, 1% sodium deoxycholate, 
1 mM EDTA and 10 mM Tris–HCl pH 8.0) and Tris–EDTA buffer (10 mM 
Tris–HCl and 1 mM EDTA pH 8.0). Each wash was performed twice at 
4 °C for 10 min on a rotating platform. The DNA was eluted through two 
incubations with ChIP elution buffer (1% SDS and 50 mM NaHCO3) for 
30 min at room temperature on a rotating platform. The crosslinking 
was reversed and DNA was purified as for the input chromatin.

For the BRF1 and RPC7α/POLR3G ChIP, 5 μg chromatin was diluted 
1:8 with ChIP RIPA buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl, 2 mM 
EDTA pH 8.0, 1% NP-40, 0.5% sodium deoxycholate and 0.1% SDS) and 
pre-cleared as described above. Magnetic beads were blocked with 
PBS containing BSA as for the RPC1 ChIP but resuspended in ChIP RIPA 
buffer. The pre-cleared chromatin (5 µg) was incubated overnight with 
10 µl anti-BRF1 (Abcam, ab264191) or 20 µl anti-RPC7α/POLR3G (Santa 
Cruz Biotechnology, sc-21754) at 4 °C with rotation. The samples were 
then incubated with 60 µl blocked magnetic beads with rotation for 
6 h at 4 °C. The beads were washed three times with low-salt buffer 
and once with high-salt buffer for 10 min at 4 °C with rotation. DNA 
was eluted from the beads by two sequential 30 min incubations with 
RIPA elution buffer (1% SDS and 100 mM NaHCO3) at room temperature 
with rotation.

H3K9me3 ChIP was performed following the Ren labora-
tory ChIP protocol (http://bioinformatics-renlab.ucsd.edu/ 
RenLabChipProtocolV1.pdf). Dynabeads M-280 sheep anti-rabbit IgG 
(50 μl; Thermo Fisher Scientific, 11203D) were washed three times with 
5 mg ml−1 BSA in PBS (BSA/PBS) and resuspended in 100 μl BSA/PBS. 
Anti-H3K9me3 (5 μl; Cell Signaling Technologies, 13969) was added to 
900 μl BSA/PBS and then combined with the magnetic beads. The mix-
ture was incubated overnight on a rotating platform at 4 °C. The beads 
were then washed three times with 1 ml BSA/PBS and resuspended in 
100 μl BSA/PBS. ChIP reactions were set up by taking 5 μg chromatin 
and adjusting the volume to 1 ml with TE buffer (10 mM Tris–HCl and 
1 mM EDTA pH 8.0). A 300 μl volume of STOCK solution (1% Triton 

X-100 and 0.1% sodium deoxycholate, prepared in Tris–EDTA buffer) 
was added to each reaction, followed by mixing with the resuspended 
100 μl antibody–beads mixture. The mixture was incubated overnight 
on a rotating platform at 4 °C. The beads were washed eight times with 
1 ml RIPA2 buffer (50 mM HEPES pH 8.0, 1 mM EDTA, 1% NP-40, 0.7% 
sodium deoxycholate and 0.5 M LiCl), followed by one wash with 1 ml 
Tris–EDTA. After removing the TE buffer using a magnetic rack, the 
beads were centrifuged for 1 min at 4,000 r.p.m. and the remaining 
liquid was removed. The protocol for DNA elution from beads was 
performed as for the RPC1 ChIP. Crosslinking reversal and DNA clean-up 
were performed as for input chromatin.

Sequencing libraries from ChIP-eluted DNA samples were prepared 
using an Ovation ultralow V2 DNA-Seq library preparation kit (Tecan, 
0344NB) and SPRIselect beads (Beckman Coulter, B23318) according 
to the manufacturer’s protocol. The library concentration was deter-
mined using a Qubit dsDNA HS assay (Thermo Fisher Scientific) and 
fragment-size distribution was assessed on an Agilent TapeStation 
system. An Illumina NovaSeq platform was used to perform 110-bp 
paired-end sequencing, generating >30 × 106 reads per library.

ATAC–Seq library construction
ATAC–Seq was performed using an ATAC–Seq kit (Active Motif, 53150) 
according to the manufacturer’s instructions. Briefly, two biologi-
cal replicates of 50,000 cells from each cell type were tagmented at 
37 °C for 60 min. After verifying a nucleosomal banding pattern in 
the resulting libraries on an Agilent Tapestation, they were quantified 
using a KAPA library quantification kit (catalogue number, KK4854) 
and sequenced in a 75-bp paired-end run on an Illumina NextSeq 500 
platform, generating 21.5–46 × 106 reads per library.

Ribosome profiling library construction
Ribosome footprint libraries were prepared essentially as described 
previously40,91 with minor modifications. The cell medium was changed 
2 h before harvesting. The cells were quickly washed with ice-cold PBS 
supplemented with 100 µg ml−1 cycloheximide (Sigma-Aldrich, C1988) 
and snap-frozen. For libraries prepared with cycloheximide in the 
lysis buffer, plates were thawed on ice and the cells were scraped off 
the plate in 400 µl polysome lysis buffer (20 mM Tris pH 7.4, 150 mM 
NaCl, 5 mM MgCl2, 1% Triton X-100, 1 mM DTT, 100 µg ml−1 cyclohex-
imide, 25 U ml−1 Turbo DNase (Thermo Fisher Scientific, AM2238), 
0.1% NP-40, 10 µg ml−1 aprotinin, 20 µM leupeptin, 2.5 µM pepstatin 
A, 0.5 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 
and 1×phosphatase inhibitor cocktail). The samples were vortexed 
vigorously, triturated through a 26 G gauge needle and spun down for 
7 min at 16,000g and 4 °C. The RNA concentration in the supernatant 
was measured using a Qubit RNA HS kit. RNA (20 µg) in 200 µl polysome 
lysis buffer was digested with 50 U RNase I (Thermo Fisher Scientific, 
AM2295) for 45 min at 2,000 r.p.m. and 22 °C.

For libraries prepared with cycloheximide and tigecycline in the 
lysis buffer, plates were thawed and cells from a 10 cm dish were lysed 
in 15 ml polysome lysis buffer supplemented with 0.1% NP-40 and 
100 µg ml−1 tigecycline (Sigma-Aldrich, PZ0021). After incubation on 
ice for 5 min, extracts were pre-cleared by centrifugation for 5 min at 
3,000g and 4 °C. Ribosomes were pelleted through 3 ml of a sucrose 
cushion (1 M sucrose, 20 mM Tris pH 8.0, 140 mM KCl, 5 mM MgCl2 and 
1 mM DTT) in a Type 70 Ti rotor for 120 min at 50,000 r.p.m. and 4 °C. 
The ribosome pellets were rinsed once, dissolved in 200 µl drug-free 
polysome lysis buffer and incubated with 200 (hiPSC) or 300 U (NPC) 
RNase I for 45 min at 2,000 r.p.m. and 22 °C.

The RNase I digestion was stopped by the addition of 100 U Super-
ase In (Thermo Fisher Scientific, AM2694), and the extracts were loaded 
on a 0.9 ml sucrose cushion (1 M sucrose in polysome lysis buffer), 
followed by centrifugation for 75 min at 120,000 r.p.m. and 4 °C in a 
S120AT2 rotor (Thermo Fisher Scientific). The pellet was dissolved 
in 400 µl LiDS/LET lysis buffer and RNA was extracted as described 
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for total RNA isolation. The RNA (3 µg) was loaded on 15% polyacryla-
mide, 7 M urea and 1×TBE gels. Fragments in the range of 19–32 nt were 
excised from the gel and crushed with a pestle. The RNA was eluted in 
400 µl gel elution buffer (0.3 M sodium acetate pH 4.5, 0.25% SDS, 1 mM 
EDTA pH 8.0) by heating (65 °C for 10 min), followed by snap freezing on 
dry ice for 10 min, thawing for 5 min at 65 °C and overnight incubation 
on a rotating wheel at room temperature. The gel debris was removed 
by centrifuging the samples through a Spin-X filter (Corning) and the 
RNA was purified by ethanol precipitation. The size-selected RNA was 
dephosphorylated for 45 min at 37 °C using T4 PNK (NEB, M0201S).

The dephosphorylated RNA was mixed with pre-adenylated adaptors 
containing five random nucleotides at their 5′ ends91 in 1×T4 RNA ligase 
buffer, 25% PEG-8000, 20 U Superase In and 1 µl T4 RNA ligase 2, trun-
cated KQ (NEB, M0373S). The mix was incubated for 3 h at 25 °C and the 
ligation products were purified by size selection on a 12% polyacrylamide, 
7 M urea and 1×TBE gel. The linker-ligated sample (50 ng) was used for 
rRNA depletion using a Ribo-Seq riboPOOL h/m/r depletion kit (siTOOLs) 
for the cycloheximide-only samples, and legacy RiboZero Gold kit (Illu-
mina) for the cycloheximide + tigecycline samples following the manu-
facturer’s instructions. The rRNA-depleted footprints were annealed 
with RT primer (5′-pRNAGATCGGAAGAGCGTCGTGTAGGGAAAGAG/
iSp18/GTGACTGGAGTTCAGACGTGTGCTC-3′) at 65 °C for 5 min and 
reverse transcribed for 30 min at 50 °C in an RT master mix containing 
1×Protoscript II Buffer, 0.5 mM dNTPs, 10 mM DTT, 20 U Superase In and 
200 U Protoscript II (NEB, E6560S). After reverse transcription, NaOH 
was added to a final concentration of 0.1 M and the RNA was hydrolysed 
by incubating the samples for 5 min at 90 °C. The cDNA products were 
purified by size selection on a 12% polyacrylamide, 7 M urea and 1×TBE 
gel, followed by ethanol precipitation. For cDNA circularization, a 20 µl 
reaction was prepared containing the gel-purified RT product mixed with 
3 µM recombinant TS2126 RNA ligase 1 in circularization buffer (50 µM 
ATP, 2.5 mM MnCl2, 50 mM MOPS pH 7.5, 10 mM KCl, 5 mM MgCl2, 1 mM 
DTT and 1 mM betaine) and incubated for 3 h at 60 °C, followed by heat 
inactivation for 10 min at 80 °C. Libraries were constructed from circu-
larized cDNA using the same primers as for tRNASeq. Amplification was 
performed using KAPA HiFi DNA polymerase (Roche) in 1×HiFi buffer 
with an initial denaturation at 95 °C for 3 min, followed by 6–10 cycles of 
98 °C for 20 s, 62 °C for 30 s and 72 °C for 15 s at a ramp rate of 3 °C s−1. The 
PCR products were purified by size selection on an 8% polyacrylamide 
and 1×TBE gel. Excised gel slices were crushed with a pestle and DNA 
was eluted by rotating samples overnight in 300 µl DNA elution buffer 
(300 nM NaCl, 10 mM Tris–HCl pH 7.5 and 0.2% Triton X-100). After etha-
nol precipitation, the libraries were quantified using a Qubit dsDNA high 
sensitivity kit and 75–86-bp single-end sequencing was performed on an 
Illumina NextSeq 500 platform, generating >19 × 106 reads per library.

Analysis of RNA-Seq data
RNA-Seq datasets were pre-processed to remove potential 3′ 
adaptors using Trim Galore v0.6.4 with default settings, retaining 
reads with a length of ≥20. The reads were aligned to the GRCh38 
human genome using STAR v2.6.1c with the following parameters: 
--outSAMtype BAM SortedByCoordinate --outFilterMultimapNmax 
1 --outFilterMismatchNmax 1 --quantMode TranscriptomeSAM Gene-
Counts. The featureCounts v1.6.2 software was used to count reads 
overlapping a filtered set of protein-coding gene annotations from 
the GENCODE basic gene annotation. Differential gene expression 
analysis was performed using DESEq2 v1.38.1. Gene expression heat-
maps were generated using ComplexHeatmap v2.14.0 (ref. 92) by 
combining standardized gene counts and significant log2-transformed 
fold-change values from DESeq2 (Padj ≤ 0.05).

Analysis of tRNASeq data
Demultiplexing and 3′ sequencing adaptor removal was performed 
using cutadapt v3.5. Indels were disallowed (--no-indels) and both 
read ends were quality trimmed with a quality score of 30 (-q 30,30). 

As sequencing was performed with more cycles than the length of any 
sequenced fragment, all reads were expected to contain adaptors and 
only trimmed reads were retained with --trimmed-only. The reads were 
further trimmed to remove the two 5′-RN nucleotides introduced by 
circularization from the RT primer with -u 2. In both processing steps, 
reads <10 nt were discarded using -m 10. Analysis of tRNA expres-
sion and modification was performed with v1.2 of the mim-tRNAseq 
computational package (https://mim-trnaseq.readthedocs.io/ 
en/latest/index.html)21. Briefly, the full set of 619 predicted tRNA 
genes for the hg38 human genome assembly were downloaded 
from GtRNAdb93 and the 22 mitochondrially encoded human tRNA 
genes were fetched from mitotRNAdb94. After intron removal and 
the addition of 5′-G (for tRNA-His) and 3′-CCA (for nuclear-encoded 
transcripts), a curated set of 599 nuclear-encoded tRNA sequences 
(excluding tRNAs with non-canonical secondary structure alignments 
or undetermined anticodons) and 22 mitochondrially encoded tRNA 
sequences was compiled as an alignment reference (--species Hsap). 
The reads were aligned to this reference with a cluster ID of 0.97, maxi-
mum mismatch tolerance at a number of nucleotides equal to 7.5% 
read length for the first alignment round and 5% read length for rea-
lignment, a deconvolution coverage ratio of 0.4 at mismatch sites to 
allow accurate cluster deconvolution and a minimum coverage thresh-
old of 0.05% total reads per transcript for low coverage transcript 
filtering. The following command was used: mimseq --species Hsap 
--cluster-id 0.97 --threads 40 --min-cov 0.0005 --max-mismatches 
0.075 --control-condition kiPSC --deconv-cov-ratio 0.4 -n hg38_diff 
--out-dir hg38_WTdiff_2rep_deconv0.4_ID0.97_0.075_remap0.05_v12/ 
--max-multi 6 –remap --remap-mismatches 0.05 sampleData_ht_
diff_2rep.txt.

In addition, DESeq2 was run on tRNA transcripts with 
single-transcript resolution by first removing those still in clusters from 
the counts table (evidenced by the presence of multiple transcripts in 
the name, separated by ‘/’) and repeating DESeq2 analysis on these. 
Isotype counts, generated by aggregating anticodon counts for the 
same tRNA isotype were also generated, and DESeq2 was additionally 
run on this count data.

Codon usage analysis
We used RSEM v1.3.1 to calculate coding-gene expression in TPM. First, 
we built a custom reference transcriptome annotation, which was 
defined on the basis of APPRIS annotations95. From these we extrap-
olated the MANE-annotated transcript for each gene and retained 
transcripts with a coding sequence beginning with an AUG codon 
and ending with a UAG/UAA/UGA codon, a nucleotide length that was 
a multiple of three and no unidentified bases. Sequences without a 
perfect match with a protein sequence in UniProtKB/SwissProt were 
removed, yielding a reference containing 16,731 transcripts.

An RSEM reference for read alignment using STAR was built using 
rsem-prepare-reference with the --star option enabled. For TPM calcula-
tion, we used this reference and adaptor-trimmed RNA-Seq reads with 
rsem-calculate-expression for each sample.

To calculate the codon usage in each sample, we weighted the 61 
sense codon frequencies of each transcript in our custom annotation 
by the TPM expression of the transcript in that sample. We separately 
counted start AUG codons from coding sequence AUG codons for the 
distinction between dynamics at start and coding sequence methionine 
codons. These raw codon usages were additionally summed across all 
transcripts to generate aggregated codon usage per codon. For nor-
malization, these values were divided by the sum of all codon usages 
per sample, representing proportional codon usage.

For comparison to tRNA anticodon abundance, we utilized raw 
mim-tRNAseq read counts summed by anticodon and converted to 
proportions of total tRNA-aligned reads. Where no perfect match 
between anticodon and codon was available due to wobble pairing, 
we duplicated the anticodon abundance of tRNAs that are known to 
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wobble pair to such codons, such that all 61 sense codons had corre-
sponding tRNA anticodon abundance values.

Ribosome profiling data analysis
Sequencing libraries were demultiplexed and adaptor-trimmed using 
Cutadapt v3.5 (ref. 96) as described for the tRNA-Seq. Trimmed reads 
>10 nt were aligned to a human rRNA reference using Bowtie v1.2.2  
(ref. 97) with the following options: -p 40 -S --best. Ribosomal 
RNA-filtered reads were aligned to GRCh38 using STAR v2.6.1c98 with the 
following options: --outFilterMultimapNmax 1 --outSAMtype BAM Sort-
edByCoordinate --outFilterMismatchNmax 0 --alignEndsType Local 
--seedSearchStartLmax 14 --alignIntronMax 10000 --sjdbOverhang 
28 --outFilterIntronMotifs RemoveNoncanonicalUnannotated 
--quantMode TranscriptomeSAM --outSAMattributes NH HI AS nM 
NM MD. Between 5.3 × 106 and 21.9 × 106 pre-processed reads were 
aligned to coding regions in the GRCh38 transcriptome.

We identified the A- and P-site codon in each open reading 
frame-mapped read using Scikit-ribo99, which uses a random forest 
with recursive feature selection for accurate A-site prediction and a 
generalized linear model for codon dwell time estimation based on 
matched ribosome profiling and RNA-Seq datasets. Kallisto 0.44.0 
with the parameters -b 100 --single -l 180 -s 20 -t 40 was used to quantify 
transcript abundances in TPM from RNA-Seq data based on the refer-
ence set of MANE-annotated transcripts. To avoid memory errors due 
to the large size of the human genome and the presence of multiple 
transcript isoforms, all RNAfold dependencies in Scikit-ribo were 
omitted and the index was built separately for each chromosome. To 
make the hg38 Gene Transfer Format file compatible with Scikit-ribo, 
transcript/untranslated region annotations were removed. For each 
transcript, the start codon in the first exon and the stop codon in the last 
exon were adjusted to represent transcript start and end coordinates, 
taking into account the gene strand. To calculate relative codon dwell 
times (defined as the difference between the dwell time of each codon 
and the median of all codon dwell times99), short (20–22 nt) and long 
(28–33 nt) ribosome footprints were analysed separately.

ChIP–Seq read alignment and multimapping analysis
ChIP–Seq and ATAC–Seq datasets were pre-processed to remove 
potential 3′ adaptors using Trim Galore v0.6.4 with default settings, 
retaining reads with a length of ≥20. Given the high frequency of 
tRNA gene duplication, which can include flanking sequences4,100, we 
first analysed the extent of multimapping for RPC1 ChIP–Seq reads 
mapping to predicted tRNA genes. First, 2 × 110-bp paired-end reads 
from RPC1 ChIP–Seq libraries were aligned to the human GRCh38 
reference genome using STAR v2.6.1c, allowing up to one mismatch 
per read (--outFilterMismatchNmax 1), up to ten alignment posi-
tions (--outFilterMultimapNmax 10) and in end-to-end alignment 
mode with prohibited introns in reads (--alignEndsType EndToEnd 
--alignIntronMax 1). Read duplicates were then removed using Picard 
Tools MarkDuplicates v2.17.10, with REMOVE_DUPLICATES = true to 
enable direct filtering of duplicates in the output binary alignment map 
(bam) file. The mmquant v1.3 (ref. 101) tool was used to count reads 
overlapping the 619 predicted tRNA genes, with each gene extended 
by 125 bp of upstream and downstream sequence. Using a custom 
Python script, the mmquant output was parsed such that for each 
library input, an output was produced consisting of tRNA genes as 
rows and one column each for uniquely mapping read counts, mul-
timapping read counts and the proportion of total reads per tRNA 
represented by multimapping reads. We defined tRNA genes that are 
not distinguishable in ChIP–Seq data by finding the consensus list of 
tRNA genes with ≥25% multimapping reads and ≥50 total aligned reads 
in RPC1 ChIP–Seq libraries (n = 61 from 27 isodecoders and 16 anticodon 
families; Supplementary Table 4). As expected, 20 of the 23 tRNA genes 
in the four tandem repeats of a cluster of tRNA genes on chromosome 
1 (Glu-CTC, Gly-TCC, Asp-GTC, Leu-CAG and Gly-GCC)100 fall within 

this group. These 61 tRNA genes were excluded from all gene-level 
analyses of ChIP–Seq and ATAC–Seq datasets. Given that nearly all 
multi-mapped reads aligned to identical gene copies coding for the 
same tRNA transcript, one alignment position was randomly chosen 
and reported for such reads in Pol III occupancy and chromatin acces-
sibility analysis aggregated by tRNA transcript.

ChIP–Seq and ATAC–Seq peak calling and annotation
Adaptor-trimmed ChIP–Seq and ATAC–Seq libraries were aligned 
to the GRCh38 reference genome using STAR with the following 
settings: up to one mismatch per read, a maximum of ten align-
ment positions, end-to-end alignment, prohibited introns and 
only one alignment reported per read (--outFilterMismatchNmax 
1 --outFilterMultimapNmax 10 --alignEndsType EndToEnd 
--alignIntronMax 1 -- outSAMmultNmax 1).  Reads from 
spike-in-containing libraries were also aligned to the D. melanogaster 
r6.39 genome with the same settings, except only uniquely mapped 
reads were retained (--outFilterMultimapNmax 1). Read duplicates were 
then removed using Picard Tools MarkDuplicates v2.17.10 as described 
earlier, and for ATAC–Seq libraries, alignments to the mitochondrial 
genome were also filtered. To account for dimerization of the trans-
poson before insertion49, filtered ATAC–Seq reads were additionally 
shifted by +4 bp and −5 bp for positive and negative strand alignments, 
respectively, using deepTools alignmentSieve v3.4.0, which was simul-
taneously used to split fragments with a maximum length of 100 nt 
representing NFRs. Both operations were performed simultaneously 
using the --ATACshift and --maxFragmentLength 100 parameters. The 
ATAC–Seq NFR alignments were then converted to BEDPE format for 
peak calling using alignmentSieve --BED.

Peaks were called using MACS callpeak v2.2.6, supplying ChIP 
input samples from HPSI0214i-kucg_2 for the kucg-2 hiPSC and CM 
datasets, HPSI0214i-wibj_2 for the wibj-2 hiPSC datasets and from 
HPSI0214i-kucg_2-derived NPC for NPC and neuron datasets, specify-
ing the fragment sizes (--extsize) with shifting model building disa-
bled (--nomodel). The small region size used to calculate dynamic 
lambda was reduced to 500 bp (--slocal 500) and peak summits were 
also reported (--call-summits). MACS peak calling was performed 
on all reads without duplicate removal (--keep-dup all), as these had 
previously been filtered for duplicates using Picard Tools. For the 
ATAC–Seq peak calling, the BEDPE files generated above were used 
(--f BEDPE) without the corresponding control input samples, shifting 
model building was not disabled and fragment sizes were not speci-
fied. For the H3K27me3 ChIP–Seq peak calling, the --broad parameter 
was additionally specified to call broad peaks for this mark. For both 
data types, significant peaks were called if the FDR-adjusted Poisson 
distribution P value was ≤0.05. Predicted peaks were filtered using the 
ENCODE project unified GRCh38 blacklist regions bed file (https://www. 
encodeproject.org/files/ENCFF356LFX/) by identifying overlaps using 
bedtools intersect v2.29.2. The blacklist-filtered peak region summits 
were then annotated by searching for their nearest predicted tRNA 
locus with bedtools closest using the filtered set of tRNA genes exclud-
ing those with significant ‘within isodecoder’ multimapping reads in 
hiPSC, as defined above. Peaks with tRNA ‘hits’ were then defined for 
each sample as those within 125 bp of an annotated tRNA gene, whereas 
tRNA hits shared by both biological replicates of an experimental con-
dition were used to define consensus tRNA peaks for that condition. 
Using RPC1 tRNA peak datasets, we defined housekeeping tRNAs as 
those that were shared between consensus sets for all cell types and 
those that were absent from all consensus lists constitute persistently 
inactive tRNAs. Repressed tRNA genes were defined as the difference 
between the union of all tRNA peaks in all cells and the housekeeping set.

ChIP–Seq coverage normalization and visualization
For visual analysis of ChIP–Seq datasets, duplicate-filtered bam files 
were converted into normalized bigWig signal tracks using deepTools 
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v3.5.1. To calculate the required normalization factors for individual 
libraries, mmquant was used to count ChIP–Seq reads that overlapped 
the annotated hg38 tRNA genes extended by 125 bp at both ends. 
Using edgeR v3.34.1, normalization factors were calculated using 
these counts as input for the calcNormFactors function using the ‘RLE’ 
method. Relative library sizes were taken as the sum of reads assigned 
to tRNA features, scaled per million reads. The edgeR normalization 
factors were further multiplied by these library-size factors and the 
reciprocal of this product was used for normalized signal generation. 
DeepTools bamCoverage with a normalization bin size of 1 bp (--binSize 
1), the previously calculated scale factors (--scaleFactor) and read 
extension using fragment lengths that were previously estimated by 
Phantompeakqualtools (--extendReads) was implemented to generate 
normalized signal files. Plotting of this signal was performed with deep-
Tools computeMatrix (in reference-point mode) and plotHeatmap, 
using the tRNA gene start as a reference (--referencePoint TSS), bed 
files of housekeeping, repressed and inactive tRNAs as regions (-R), 
and either 500 bp or 1,000 bp flanking the tRNA gene start (-a 500 -b 
500 or -a 1000 -b 1000, respectively).

Differential occupancy analysis with DiffBind
For the differential occupancy analysis, we utilized DiffBind v3.2.7 and 
specified the set of human tRNA genes filtered for <25% multimapping 
reads (as described earlier) for inclusion in the analysis. This enabled us 
to obtain occupancy analysis results for all tRNA genes regardless of the 
presence or absence of a ChIP peak. Briefly, we first generated a bed file 
of these tRNA genes extended by 200 bp on either end to capture all ChIP 
signals around each tRNA. To avoid peak merging by DiffBind, overlap-
ping regions in these extended features (for tRNAs separated by less than 
200 bp) were determined, using bedtools intersect, and subtracted from 
the extended features using bedtools subtract. Sample sheets specifying 
duplicate-filtered bam files for alignments to the human (‘BamReads’ 
column) and D. melanogaster (‘SpikeIn’ column) genomes, extended 
and processed tRNA regions (‘Peaks’ column) as well as metadata such 
as condition and replicate were supplied for DiffBind analysis. After 
read counting (dba.count), blacklisted regions were not filtered, as this 
had previously been done after peak calling, but non-redundant sets 
of greylist regions were determined and excluded from analysis using 
dba.blacklist with blacklist = FALSE. Normalization and differential 
occupancy analysis were performed using dba.normalize with RLE 
normalization from DESeq2 (Benjamini–Hochberg-adjusted Wald test P 
value) combined with spike-in normalization (normalize = DBA_NORM_
RLE, spikein = TRUE) and dba.analyse. Finally, the results for individual 
contrasts were retrieved using the DiffBind dba.report function, and 
annotation information (that is, tRNA gene name) was restored using 
the annotatePeakInBatch function of ChIPpeakAnno v3.26.4.

Whole-genome bisulfite sequencing analysis
Public whole-genome bisulfite sequencing data for the human H1 
human embryonic stem cell line were obtained from ENCODE project 
number ENCSR617FKV (Gene Expression Omnibus (GEO): GSE80911) 
by downloading the processed bed files of methylation state at 
CpG nucleotides for both biological replicates (ENCFF434CNG and 
ENCFF573YXL). A custom tRNA annotation was generated by extending 
each tRNA gene with 125 bp upstream for the filtered set of tRNA genes 
without significant multimapping in the RPC1 ChIP–Seq datasets. The 
CpG methylation data were then matched to these annotations using 
bedtools intersect v2.29.2. The proportion of CpG methylation, present 
in column 11 of the bed files, was plotted per biological replicate sepa-
rated by tRNA gene activity defined by RPC1 occupancy in the four cell 
types (‘ChIP–Seq and ATAC–Seq peak calling and annotation’ section).

Sequence motif analysis
To compare A- and B-box sequences in the three activity classes of 
tRNAs defined from the RPC1 ChIP–Seq data, we first generated 

multiple sequence alignments of all human hg38 tRNA genes to tRNA 
covariance models using the cmalign command from Infernal v1.1.2. 
We then extracted A- and B-box sequences from these alignments 
corresponding to positions 9–21 and 75–85, respectively. Sequence 
logos were then generated for these subsequences, separated by tRNA 
activity class, using the Python package logomaker v0.8.

To define genome-wide motifs for A- and B-box promoter 
sequences, we used the online MEME prediction tool102 (https://meme- 
suite.org/meme/tools/meme) and uploaded all 619 predicted tRNAs 
in the hg38 genome from GtRNAdb93. Motif prediction was run in 
classic mode, with one occurrence per sequence allowed per motif, 
as is expected for A and B boxes in tRNA sequences. The search was 
limited to two motifs with a width of 9–11 nt, based on previous predic-
tions of A- and B-box consensus motif lengths. Finally, motif searching 
was limited to the given strand only, as the supplied sequences were 
mature tRNA and not DNA. MEME found exactly two motifs in the input 
sequences and the consensus for each corresponded to known A- and 
B-box consensus sequences.

The results in XML format were downloaded, imported into R 
v4.2.2 using the read_meme function and plotted using view_motifs 
from universalmotif v1.16.0. These were converted into position 
weight matrices using universalmotif convert_type for each motif 
instance. Motif densities were calculated using a customized ver-
sion of the seqPattern function plotMotifDensityMap that returns 
the motif densities in each sequence. Briefly, motifScanHits is called 
using the imported position weight matrices to return motif hits in 
each sequence passing a minimum motif counting score of 90% (min-
Score = 90%). Two-dimensional binned kernel density estimates were 
then calculated on the motif hits using bkde2D from KernSmooth 
v2.23 with a bandwidth of 1 bp in both coordinate directions. For each 
sequence, the maximum density score was extracted and used for 
comparing distributions of motif densities in each tRNA activity class.

tRNet architecture
The tRNet CNN is a multi-class CNN implemented in keras v2.2.4 
(Tensorflow v1.15.5 backend) to predict the class of tRNA gene as 
housekeeping, repressed or inactive from genomic input sequence in 
one-hot-encoded format (A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0] and 
T = [0,0,0,1]). Conceptually, the architecture is based on that described 
for BPNet56 with minor adjustments to the size of the receptive field 
of the network and the output (Extended Data Fig. 5g). Briefly, tRNet 
consists of an initial convolutional layer with 128 filters and a width of 
20 bp, followed by eight consecutive dilated convolutional layers with 
128 filters and a width of 10 bp, where the dilation rate is doubled at 
each layer. Such exponential dilation rates double the number of skip 
positions in the convolutional filter, effectively increasing the com-
plexity of pattern learning and the receptive field in sequence space 
that is visible to the network. Each convolutional layer is followed by a 
rectified linear activation (f(x) = max(0,x)). A global max pooling fol-
lows the convolutional layers and precedes the fully connected hidden 
layer, which contains 32 neurons. The tRNet output consists of a final 
fully connected layer with softmax activation to three outputs, each 
representing the probability of a tRNA gene belonging to each class 
based on the input sequence.

tRNet transfer learning approach
During the training of tRNet we utilized a transfer learning approach 
from a network trained for a binary classification task. In this network 
the architecture is identical to that of tRNet, except that the final output 
layer consists of a single sigmoid activated output to predict whether 
the input sequence belongs to a housekeeping tRNA or not. Inputs 
for this model also only consisted of sequences from the subset of 
tRNA genes in housekeeping and inactive classes. Given the more dis-
tinct sequence difference between these two classes, this is a simpler 
classification problem from which learned features are exploited for 
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better generalization in the final multi-class model. Transfer learning 
was achieved by training the modified model on input sequences 
from housekeeping and inactive genes, and their gene class labels 
obtained from called peaks from ChIP–Seq data. Next, all layers were 
frozen to prevent retraining of already trained layers and the model 
architecture was updated to replace the output layer with one produc-
ing three softmax activated outputs, as described earlier. This model 
was then retrained on one-hot-encoded sequence data from all three 
classes and their corresponding tRNA gene class labels. Finally, the 
last convolutional layer of the network was unfrozen and the model 
trained once again to optimize the weights of this layer for the new 
multi-class model.

CNN training and evaluation
All networks were trained with the same approach on 80% of the input 
data, and validated on 20% held-out data. To evaluate model perfor-
mance, K-fold cross-validation (k = 5) was implemented on training 
data, and performance in the form of validation accuracy and loss 
across the five folds was compared. Training of the initial binary classi-
fication model, from which learning was transferred, was implemented 
using the Adam optimizer (learning rate = 0.00025, as determined 
by parameter hypertuning), binary cross-entropy loss function and 
early stopping with patience of ten epochs. For final model training, 
after transfer learning, the same training parameters were specified, 
except that a categorical cross-entropy loss function more tailored to 
the multi-class output of this model was used. Final model performance 
was evaluated on held-out testing data and the accuracy the of model 
predictions for each class was assessed using the AUROC by plotting 
the one-versus-rest macro-average scores.

Nucleotide contribution score calculation and motif analysis 
with TF-Modisco
To calculate the contribution scores of each nucleotide in each input 
sequence to the final prediction, we employed the SHAP DeepExplainer 
module, an extension of DeepLift for calculating SHAP contribution 
scores. These contribution scores, one for every nucleotide in every 
input sequence, are based on the difference in output between the 
model given a set of shuffled input sequences and the output of the 
model on actual tRNA upstream sequence. Ten dinucleotide-shuffled 
sequences for every input sequence were supplied for the contribution 
score calculation. The resulting DeepExplainer hypothetical contribu-
tion scores were multiplied by the one-hot encoded matrix for each 
sequence to derive the final contribution scores for each sequence. The 
hypothetical and final contribution scores were calculated separately 
for every output, or task, of the model, corresponding to classification 
of sequences as housekeeping, repressed or inactive tRNAs.

TF-Modisco v0.5.14.1 was then run on the contribution scores from 
SHAP DeepExplainer for each task separately to find sequence enrich-
ment or motifs among nucleotides with high contribution to model out-
put. Significant high-importance windows in the sequences, or seqlets, 
were detected using a sliding window size of 15 bp, a flanking sequence 
of 5 bp and seqlet FDR threshold of 0.01 (TfModiscoWorkflow(sliding_
window_size = 15, flank_size = 5, target_seqlet_fdr = 0.01)). Final patterns 
were assembled from detected seqlets with a window size of 20 bp, 
flaking sequence of 10 bp and a minimum of 20 seqlets per cluster 
(TfModiscoSeqletsToPatternsFactory(trim_to_window_size = 20, ini-
tial_flank_to_add = 10, final_min_cluster_size = 20).

Enhancer analysis
Enhancer elements for the GRCh38 genome were obtained from the 
UCSC GeneHancer Double Elite regulatory elements table, fetching 
elements whose identification and association to target genes are 
derived from more than one information source. First, enhancer ele-
ments per chromosome were downloaded with the table browser 
using a filter for ‘Enhancer’ in elementType (accessed 14 April 2023); 

these were merged to obtain all Double Elite GeneHancer enhanc-
ers in the GRCh38 genome. To find tRNA genes that overlap with 
this set of enhancers, bedtools closest v2.29.2 was used to obtain 
the closest enhancer to each of the tRNA loci with gene-resolution 
RPC1 ChIP occupancy data (n = 558); those overlapping tRNAs (dis-
tance of 0 bp) were retained (n = 55). As an additional source of evi-
dence for enhancer activity, overlaps with FANTOM5 CAGE data were 
obtained from https://fantom.gsc.riken.jp/5/datafiles/reprocessed/ 
hg38_latest/extra/enhancer/F5.hg38.enhancers.bed.gz and CAGE 
peaks overlapping all enhancer elements were identified using bed-
tools intersect v2.29.2. From this set of FANTOM5 CAGE-overlapping 
enhancers, those that also overlapped tRNAs were found with a com-
bination of bedtools closest and filtering for a distance of 0 bp, as 
above. A table containing tRNA and overlapping enhancer position and 
identity information, FANTOM5 CAGE peak overlap, tissue and/or cell 
type specificity of each of these tRNA-associated enhancers as well as 
their predicted target genes was compiled (Supplementary Table 3). 
Tissue/cell type and target information were obtained by request from 
the GeneCards database (https://www.genecards.org/Guide/Datasets) 
for GeneHancer v5.16. Co-regulation with overlapping enhancers was 
assessed for tRNA genes that (1) were in the repressed and housekeep-
ing class, (2) overlapped a Double Elite enhancer with FANTOM5 CAGE 
support and (3) demonstrated evidence of tissue/cell-type specificity in 
a cell type related to those used in this study. If an enhancer overlapped 
more than one tRNA, only those where the tRNAs are of the same activ-
ity status were retained for analysis.

Statistics and reproducibility
No statistical method was used to pre-determine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment. 
No data were excluded from the analyses. Information on the statisti-
cal tests used for each analysis and reproducibility is included in the 
relevant sections describing the method as well as in the figure legends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
High-throughput sequencing data have been deposited in the GEO 
database (GSE227928). The public genome-wide bisulfite sequencing 
data used here are available through ENCODE project ENCSR617FKV 
(GEO: GSE80911). Source data are provided with this paper. All other 
data supporting the findings of this study are available from the cor-
responding author on reasonable request.

Code availability
The mim-tRNAseq data analysis pipeline is available at https://github.
com/nedialkova-lab/mim-tRNAseq. The tRNet code is available at 
https://github.com/nedialkova-lab/tRNet. Customized Scikit-ribo 
v0.2.4bl for use on the human genome is available at https://github.
com/nedialkova-lab/scikit-ribo-ext.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | mim-tRNAseq accurately captures changes in mature 
tRNA pool composition upon differentiation. a, Heatmap of differentially 
expressed mRNAs (Benjamini–Hochberg-adjusted Wald test; Padj ≤ 0.05) in at 
least one cell type relative to hiPSC. Left: hierarchically clustered heatmap of 
scaled Z score of normalized transcript counts in hiPSC, NPC, neurons and CM 
(n = 2). Right: log2 fold changes for NPC, neurons and CM relative to hiPSC. b, 
Representative fluorescence microscopy images (from at least two independent 
experiments) of immunostaining for cell type-specific marker proteins (green) 
and DAPI (blue) in cells with undetectable or substantially lower (MAP2 in hiPSC) 
marker gene expression based on RNA-Seq. Scale bar, 10 µm. c, Alignment 
statistics for mim-tRNAseq reads. Bars and percentages: mean values per cell 
type, dots: individual sample values (n = 2 biological replicates). d-e, Box plots of 
full-length read fraction (d) and full 3′-CCA end fraction (e) per tRNA transcript 
(n = 2 biological replicates; centre line and label: median; box limits: upper and 
lower quartiles; whiskers: 1.5×interquartile range). f, Bar plot of cytosolic and 
mitochondrial tRNA read fractions per cell type. Bars: mean (n = 2 biological 

replicates), percentages: mean mitochondrial fraction. g, Full transcript 
sequences for human tRNA-Pro-AGG-1 and tRNA-Pro-AGG-2. Box indicates 
anticodon, highlighted in bold is the single mismatch that coincides with m1G37 
in tRNA-Pro-AGG-2. h, Mean expression of neuron-specific tRNA-Arg-UCU-4 
in human cell lines (proportions of tRNA-aligned reads from mim-tRNAseq; 
n = 2 biological replicates). i, Northern blotting of tRNA-Arg-UCU-4, tRNA-Asn-
GUU-1 and tRNA-Gly-CCC-2 (n = 3 biological replicates). j, Relative abundance of 
tRNA-Arg-UCU-4, tRNA-Asn-GUU-1 and tRNA-Gly-CCC-2 measured by mim-
tRNAseq (Fig. 1f) or Northern blotting (i), normalized to the mean value for hiPSC 
(n = 2 biological replicates for mim-tRNAseq; matched total RNA samples). k, 
Abundance of tRNA-Arg-UCU in hiPSC and differentiated cells (proportions 
of tRNA-aligned reads from mim-tRNAseq). Line is mean, dots represent 
individual sample values (n = 2 biological replicates). l, Proportional isodecoder 
composition changes for tRNA-Arg-UCU upon differentiation of hiPSC. Values 
are mean proportions of tRNA-mapped reads per isodecoder (n = 2 biological 
replicates). Source numerical data and unprocessed blots are provided.
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Extended Data Fig. 2 | Codon usage correlates with tRNA abundance in 
human cells. a, Size and overlap of top 5% expressed gene sets in each cell type 
based on mean TPM values (n = 2 biological replicates for each cell type). Cell-
type or state-specific sets, and shared sets are indicated. b, Violin plots indicating 

distributions of Pearson’s correlation coefficients between mean weighted 
codon usage and mean tRNA anticodon abundance per transcript defined in 
(a) (centre line: median). P-values were calculated using Wilcoxon tests. Source 
numerical data are provided.
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Extended Data Fig. 3 | Decoding rates correlate with tRNA abundance in 
human cells. a-b, Representative length distributions of ORF-mapped reads 
in ribosome footprint libraries from hiPSC and NPC extracts supplemented 
with cycloheximide (CHX) and tigecycline (TIG) (a) and correlation of 1/tRNA 
anticodon abundance to hiPSC P-site codon dwell times for short (20–22 nt) 
and long (28–33 nt) footprints (b). c, As in (a) for ribosome footprint libraries 
from hiPSC extracts supplemented with CHX only. d-e, Correlation of 1/tRNA 
anticodon abundance to A-site (d) and P-site (e) codon dwell times for short 
(20–22 nt) and long (28–32 nt) footprints in ribosome footprint libraries from 
hiPSC extracts supplemented with CHX only. Solid blue lines: linear regression 
model; shaded grey: 95% confidence interval (CI); Pearson’s correlation 
coefficient. f, A-site codon dwell times estimated from long footprints (28–33 
nt) from hiPSC and NPC lysates treated with both CHX and TIG (n = 2 biological 
replicates). Dot size: absolute log2 fold change in tRNA anticodon abundance 
in NPC relative to hiPSC (Benjamini–Hochberg-adjusted Padj ≤ 0.05); green: 

upregulation, purple: downregulation of cognate tRNA anticodon in NPC. g, Plot 
of mean fraction of reads mapped to canonical ORFs relative to cell-type matched 
analysis for full gene set and corresponding Pearson’s correlation coefficient 
of relative ribosome dwell times between biological replicates calculated 
for transcript sets as in Extended Data Fig. 2a. h, Correlation between mean 
relative A-site codon dwell time in hiPSC vs NPC (from Fig. 2c,d; long footprints) 
for shared highly-expressed mRNAs (left panel) and cell type-specific highly 
expressed mRNAs (right panel). Dots are coloured by log2 fold changes in tRNA 
anticodon abundance in NPC relative to hiPSC (Padj ≤ 0.05; grey dots denote 
non-significant changes). Dashed line represents y = x. Pearson’s correlation 
coefficient displayed. i, Correlation between log2 fold changes in tRNA anticodon 
abundance in NPC relative to hiPSC (Padj ≤ 0.05) and differences in mean codon 
dwell time between NPC and hiPSC for cell type-specific highly expressed 
mRNAs. Solid line: linear regression model; shaded grey: 95% confidence interval; 
Pearson’s correlation coefficients. Source numerical data are provided.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | High-resolution RPC1 and BRF1 ChIP-Seq reveal 
Pol III dynamics at tRNA genes during differentiation. a, Representative 
normalized ChIP-Seq signal at a U6 RNA gene (RNU6-1) on chromosome 15 of 
the human genome for RPC1 and BRF1 ChIP-Seq in one biological replicate of 
hiPSC. y-axis values: genome-wide ChIP signal normalized to the estimated 
library sizes generated from counts over extended tRNA features (±125 bp) and 
scaled to reads-per-million (rpm). b, Correlation of mean tRNA abundance per 
deconvoluted unique transcript (n = 373) estimated by mim-tRNAseq to mean 
RPC1 ChIP-Seq reads aligned to extended tRNA features (±125 bp) for NPC and CM 
(n = 2 biological replicates). Both metrics are scaled to proportions of total tRNA-
mapped reads for each dataset and method. Solid blue lines: linear regression 
model; shaded grey: 95% confidence interval; Pearson’s correlation coefficients. 
c, Venn diagram indicating overlap of tRNA peaks from replicates of RPC1 ChIP-
Seq datasets. Shared peaks represent the consensus set for each cell type. d, 
Venn diagram indicating overlap of tRNA peaks between RPC1 and BRF1 ChIP-Seq 

consensus sets per cell type (n = 2 biological replicates for each cell type). e, 
Venn diagram indicating overlap between housekeeping tRNA gene set (RPC1 
consensus tRNA peak in all four cell types from n = 2 biological replicates) and 
major isodecoders (contributing 90% to anticodon pool from mim-tRNAseq). 
Anticodon families with no detectable expression are excluded. Housekeeping 
tRNA genes were collapsed according to identical transcripts to enable matching 
to transcript-level data for major isodecoders. f-g, UpSet plots of (f) significant 
consensus RPC1 peaks within 125 bp of annotated tRNA genes per cell type 
(FDR-adjusted P ≤ 0.05, n = 2 biological replicates), and (g) comparison of tRNA 
gene numbers in three tRNA activity classes and predicted active tRNA genes 
in Thornlow et al.43. Lower left: barplot of total detected consensus tRNA peaks 
for each cell type/group/publication. Right: barplot of intersection set size of 
consensus tRNA peaks (upper) in the given intersection (lower). h, Immunoblots 
of RPC1 and RPC2 in hiPSC, NPC, neurons, and CM (n = 3 biological replicates). 
Source numerical data and unprocessed blots are provided.
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Extended Data Fig. 5 | Relationship between Pol III occupancy at tRNA 
genes with chromatin status and nearby gene activity. a, Heatmaps showing 
ChIP-Seq signal (RPC1, H3K4me3, H3K27me3, H3K9me3) and nucleosome-free 
regions (NFR) from ATAC–Seq around tRNA gene start sites (±1 kbp) for single 
replicates of NPC and CM. Normalized signal, accounting for estimated library 
sizes generated from counts over extended tRNA features (±125 bp) is scaled to 
reads-per-million (rpm). tRNA genes are separated into housekeeping, repressed 
and inactive based on significant peaks in RPC1 ChIP-Seq data (FDR-adjusted 
P ≤ 0.05), and sorted in descending order based on mean value per region. b, 
Correlation of mean ATAC–Seq NFR reads aligned to extended tRNA features 
(±125 bp) to tRNA abundance per deconvoluted unique transcript (n = 373) 
estimated by mim-tRNAseq (n = 2 biological replicates for each cell type; 
Pearson’s correlation coefficients). Both metrics are scaled to proportions of 

total tRNA-mapped reads for each dataset and method. Solid blue lines: linear 
regression model; shaded grey: 95% confidence interval. c, Violin plots of CpG 
methylation proportions separated by tRNA activity (centre line: median) from 
ENCODE. P values are from Wilcoxon tests. d, Boxplot showing the distribution 
of mean RPC1 ChIP-Seq reads aligned to extended tRNA features (±125 bp) as a 
function of the distance between tRNA genes in different activity classes to their 
nearest neighbouring coding gene (centre line and label: median; box limits: 
upper and lower quartiles; whiskers: 1.5 × interquartile range). Data are separated 
by activity class of tRNA, and whether the neighbouring coding gene is predicted 
to be active by presence of upstream H3K4me3 and ATAC–Seq NFR peaks (n = 1 
for H3K4me3 in NPC, n = 2 biological replicates for all others). Source numerical 
data are provided.
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Extended Data Fig. 6 | Sequence determinants of selective tRNA gene 
expression in human cells. a, Violin plot showing the distribution of tRNAScan-
SE score per tRNA gene (n = 558) separated by tRNA activity (centre line: median). 
b, Sequence logos of human A- and B-box promoter sequences from aligned 
mature hg38 tRNA, separated by tRNA activity. c, MEME-predicted human A- and 
B-box consensus sequences across the complete hg38 tRNA gene set (n = 619). d, 
Mean RPC1 ChIP-Seq reads aligned to extended tRNA features (±125 bp) for tRNA-
Pro-TGG-1-1 and tRNA-Pro-TGG-2-1 across different cell types. Individual sample 
values indicated by dots (n = 2 biological replicates). e, Mean fraction of RPC1 
ChIP-Seq reads aligned to extended tRNA features (±125 bp) for tRNA-Tyr-GTA-5 
gene copies across different cell types. Colour bars under gene names indicate 

activity class (green: housekeeping; orange: repressed; purple: inactive). Bars 
represent the mean (n = 2 biological replicates); dots indicate individual sample 
values. f, Schematic of tRNet architecture and training. g, Top three significant 
TF-Modisco-generated sequence motif patterns for prediction in inactive tRNA 
task (FDR-adjusted P ≤ 0.01). Displayed are the number of seqlets contributing 
to the given motif pattern. h, Fraction of tRNA-mapped BRF1 ChIP-Seq reads 
at wild-type (‘WT’) and CRISPR-edited tRNA-Pro-TGG-2-1 locus (‘Edit’, upstream 
sequence insertion) in hiPSC and NPC (n = 2 biological replicates; bar: median); 
read fractions at the neighbouring tRNA-Pro-AGG-2-4 and at tRNA-Pro-TGG-1-1 is 
shown for comparison. Source numerical data are provided.
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Extended Data Fig. 7 | tRNA-Arg-TCT-4-1 overlaps an enhancer and is co-
regulated with CADM3 in neurons. a, Pairwise sequence alignment of human 
(hg38) and mouse (mm39) tRNA-Arg-TCT-4-1 loci, including 200 bp upstream 
from tRNA gene start and 100 bp downstream of tRNA gene end. Highlighted 
in blue are tRNA-Arg-TCT-4-1 gene sequences. Bold black indicates ~140-bp 

upstream sequence with near-complete sequence identity. b, Heatmaps showing 
proportion of tRNA-mapped RPC1 ChIP reads and scaled Z score of normalized 
transcript counts (from DESeq2) for elite enhancer target genes from RNA-Seq 
data in hiPSC, NPC, neurons and CM (n = 2) for tRNA-Arg-TCT-4-1 (top) and tRNA-
Lys-TTT-3-1 and tRNA-Lys-TTT-3-2 (bottom). Source numerical data are provided.
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Extended Data Fig. 8 | Impact of changes in Pol III composition on tRNA 
gene expression during differentiation. a, Gene expression heatmaps for 
POLR3G and POLR3GL in hiPSC, NPC, neurons and CM (n = 2). Scale represents 
standardized Z score calculated using RNA-Seq raw gene counts across samples. 
b, Immunoblots of RPC7α in hiPSC, NPC, neurons, and CM (n = 3 biological 
replicates). c–e, Venn diagrams depicting overlap between consensus RPC7α 
ChIP-Seq tRNA peaks in kucg-2 hiPSC and (c) consensus RPC1 tRNA ChIP-Seq 
peaks in kucg-2 hiPSC, (d) housekeeping tRNA genes, and (e) tRNA genes 

repressed during differentiation. f, Immunoblot of RPC7α hiPSC CRISPRi cells 
carrying a sgRNA against POLR3G (n = 2 biological replicates). Gene knockdown 
was induced by addition of 2 µM doxycycline for 2 d. g, MA plot generated by 
DiffBind of spike-in normalized RPC1 counts over tRNA features (±125 bp) vs. 
log2 fold-change for (f) doxycycline-induced hiPSC carrying a sgRNA against 
POLR3G relative to uninduced controls (n = 2 biological replicates). Grey dots: 
not significant (FDR-adjusted P > 0.05). Source numerical data and unprocessed 
blots are provided.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Western blot images were collected with iBiright Analysis Software (Thermo Fisher). Norther blot images were collected on a Typhoon FLA 
9000 (GE Healthcare). 

Data analysis R v4.2.2 and Python v3.7 were used for analysis of NGS data, in addition to the following command-line software: 
mimseq v1.2 (https://github.com/nedialkova-lab/mim-tRNAseq/tree/master/mimseq) 
Customized scikit-ribo v0.2.4b1 for use on human genome (https://github.com/nedialkova-lab/scikit-ribo-ext). 
STAR v2.6.1.c 
cutadapt v3.5 
Trim Galore v0.6.4 
RSEM v1.3.1 
Kallisto v0.44.0 
Picard Tools MarkDuplicates v2.17.10 
mmquant v1.3 
deepTools alignmentSieve v3.4.0 
deepTools v3.5.1 
MACS v2.2.6 
bedtools v2.29.2 
Infernal v1.1.2 
Phantompeakqualtools v1.2.2 
tRNet CNN model (https://github.com/nedialkova-lab/tRNet) 
 



2

nature portfolio  |  reporting sum
m

ary
April 2023

R packages: 
DESEq2 v1.38.1  
edgeR v3.34.1 
ComplexHeatmap v2.14.0 
DiffBind v3.2.7 
ChIPpeakAnno v3.26.4 
universalmotif v1.16.0 
phantompeakqualtools v1.2.2 
 
Python packages: 
logomaker v0.8 
keras v2.2.4  
SHAP v0.29.3 
Tensorflow v1.15.5  
TF-Modisco v0.5.14.1  
 
Online tools: 
MEME v5.5.4 (https://meme-suite.org/meme/tools/meme)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

High-throughput sequencing data has been deposited in the Gene Expression Omnibus Database (GSE227928). Public genome-wide bisulfite sequencing data used 
here is available through ENCODE project ENCSR617FKV (GEO: GSE80911). Source data have been provided in Source Data. All other data supporting the findings of 
this study are available from the corresponding author on reasonable request.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine appropriate sample sizes. For all sequencing datasets where comparative statistical analysis was 
performed, a sample size of two was chosen to allow such statistical tests at an affordable cost. Sample sizes are indicated in the figure 
legends.
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Data exclusions No data was excluded.

Replication For tRNA-seq, ATAC-seq, RNA-seq and ChIP-seq experiments, 2 biological replicates (independent differentiations) were performed, and 
correlation analysis were conducted to ensure the consistency between replicates. For H3K27me3 ChIP-seq, H3K9me3 ChIP-Seq, and 
H3K4me3 ChIP-Seq in NPC, a single replicate per cell type were performed. For ribosome profiling where cycloheximide (CHX) and tigecycline 
(TIG) were present in lysis buffer, 2 biological replicates for hiPSC and NPC were performed, while only one replicate was performed for  the 
CHX-only sample.  For CRISPRi and following functional studies, 2 clones were selected for each sgRNA. All attempts of replications were 
successful.

Randomization No randomization was performed. This study was carried out in the kucg_2 hiPSC line and its differentiated counterparts, as well as in wibj_2 
hiPSC cells and HEK293T/17. Covariates control is not applicable due to the small number of cell lines used.

Blinding The investigators were not blinded to the group as no human subjects or clinical samples were involved and no subjective measurements 
were taken.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Anti-POU5F1 C-10 (1:400; Santa Cruz, #sc-5279) 

Anti-SOX2 E-4 (1:200; Santa Cruz, #sc-365823) 
Anti-NANOG P1-2D8 (1:200; DSHB Hybridoma Product PCRP-NANOGP1-2D8) 
Anti-PAX6 (1:200; Abcam #ab5790) 
Anti-Nestin (1:200; R&D Systems, #MAB1259) 
Anti-MAP2 (1:1000; Abcam, #ab92434) 
Anti-CHAT (1:200; Abcam, #ab6168) 
Anti-cTNT (1:5; CT3, deposited to the DSHB by Lin, J.J-C.) 
Anti-ACTN2 (1:800; Sigma-Aldrich #A7811) 
Goat anti-mouse Alexa Fluor 488 (1:2000; Thermo Fisher Scientific, #A-11001) 
Goat anti-rabbit Alexa Fluor 488 (1:2000; Thermo Fisher Scientific, #A-11034) 
Goat anti-mouse Alexa Fluor 633 (1:500; Thermo Fisher Scientific, #A-21052) 
Anti-POLR3A/RPC1  (1:1000 for immunoblotting and 5 μg for ChIP; Cell Signaling Technology, #12825) 
Drosophila spike-in  antibody (0.2 μg for ChIP; Active Motif, #61686)  
Anti-H3K4me3  (1:200; Active Motif, #39159) 
Anti-H3K27me3  (1:200; Millipore, #07-449)  
Anti-H3K9me3 (1:200; Cell Signaling, #13969) 
Anti-POLR3G/RPC7α  (1:1000 for immunoblotting and 1:100 for ChIP; Santa Cruz, #sc21754)  
Anti-POLR3B/RPC2 (1:1000; Santa Cruz; #sc-515362) 
Anti-BRF1 (1:100; Abcam, #ab264191)  
Anti-MAF1 (1:1000; Santa Cruz; #sc-515614 X) 
Anti-phospho-4E-BP1 (1:1000; Cell Signaling, #2855T) 
Anti-phospho-p70 S6 Kinase (T389)  (1:1000; Cell Signaling, #9206S) 
Anti-4E-BP1 (1:1000; Cell Signaling, #9644) 
Anti-p70 S6 Kinase (1:1000; Cell Signaling, #2708T) 
Anti-vinculin (1:1000; Cell Signaling; #13901) 
Anti-mouse IgG-HRP, 1:4000; Dianova, #115-035-003 
Anti-rabbit IgG-HRP (1:4000; Dianova, #111-035-003) 
  
 

Validation Anti-POU5F1 C-10 (Santa Cruz, #sc-5279): according to the manufacturer, this mouse monoclonal antibody is raised against amino 
acids 1-134 of Oct-3/4 of human origin recommended for is recommended for detection of Oct-3/4 of mouse, rat and human origin 
by immunofluorescence; non cross-reactive with Oct-3/4 isoform B; cited in >2450 publications (https://www.scbt.com/p/oct-3-4-
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antibody-c-10?productCanUrl=oct-3-4-antibody-c-10&_requestid=526329) 
 
Anti-SOX2 E-4 (Santa Cruz, #sc-365823): according to the manufacturer, this mouse monoclonal antibody is specific for an epitope 
mapping between amino acids 170-201 within an internal region of Sox-2 of human origin and is recommended for is recommended 
for detection of Sox-2 of mouse, rat and human origin by immunofluorescence; cited in >260 publications (https://www.scbt.com/p/
sox-2-antibody-e-4?requestFrom=search). 
 
Anti-NANOG P1-2D8 (DSHB Hybridoma Product PCRP-NANOGP1-2D8): according to the manufacturer, this monoclonal antibody was 
raised against amino acids 1-127 of the human NANOG protein and is recommended for detecting human NANOG by 
immunofluorescence (https://dshb.biology.uiowa.edu/PCRP-NANOGP1-2D8). 
 
Anti-PAX6 (Abcam #ab5790): according to the manufactirer, this polyclonal antibody is suitable for detecting PAX6 from mouse, 
human, rat, and monkey by immunofluorescence; cited in >100 publications (https://www.abcam.com/products/primary-antibodies/
pax6-antibody-ab5790.html?productWallTab=ShowAll) 
 
AAnti-Nestin (R&D Systems, #MAB1259): according to the manufactirer, this monoclonal antibody detects human nestin by 
immunofluorescence; cited in >100 publications (https://www.rndsystems.com/products/human-nestin-
antibody-196908_mab1259?gclid=Cj0KCQjw4NujBhC5ARIsAF4Iv6eJ-
nyTOhCazimeegmTVBXGL9pW6doy4o12apC7F5i93ffSmtPhOxUaAtgNEALw_wcB&gclsrc=aw.ds#product-details) 
 
Anti-MAP2 (Abcam, #ab92434): according to the manufactirer, this polyclonal antibody detects human MAP2 by 
immunofluorescence; cited in >45 publications (https://www.abcam.com/products/primary-antibodies/map2-antibody-
ab92434.html) 
 
Anti-CHAT (Abcam, #ab6168): according to the manufactirer, this polyclonal antibody was raised against a peptide corresponding to 
amino acids 168-189 of Choline Acetyltransferase and reacts with the protein in immunohistochemitry; cited in >13 publications 
(https://www.abcam.com/products/primary-antibodies/choline-acetyltransferase-antibody-ab6168.html) 
 
Anti-cTNT (CT3, deposited to the DSHB by Lin, J.J-C.): initially published in initially published in: Jin, J., Lin, J.-C., and Lin, J.J.-C. (1990). 
Troponin T isoform switching during heart development. Ann. NY Acad. Sci. 588, 393-396. CT3 recognizes the embryonic and adult 
cardiac isforms [PMID: 2358124]. CT3 cross-react with slow skeletal muscle TnT but doesn't recognize fast skeletal muscle TnT [PMID: 
12732643]. Cited in >99 publications (https://dshb.biology.uiowa.edu/CT3) 
 
Anti-ACTN2 (Sigma-Aldrich #A7811): according to the manufacturer, this monoclonal antibody is suitable for detecting human α-
Actinin by immunofluorescence; cited in >970 publications (https://www.sigmaaldrich.com/DE/en/product/sigma/a7811). 
 
Anti-POLR3A/RPC1  (Cell Signaling Technology, #12825): according to the manufacturer, this monoclonal antibody is produced by 
immunizing animals with a synthetic peptide corresponding to residues surrounding Val613 of human POLR3A protein and has been 
validated for use in ChIP-Seq (https://www.cellsignal.com/products/primary-antibodies/polr3a-d5y2d-rabbit-mab/12825). Additional 
validation we performed included Western blotting (single band at the expected MW of POLR3A/RPC1) and  extensive 
characterization of ChIP-Seq datasets (presence of clearly defined strong peaks at Pol III target genes and absence of ChIP signal from 
other genomic regions). 
 
Drosophila spike-in  antibody (Active Motif, #61686): according to the manufacturer, the spike-in antibody recognizes a histone 
variant that is specific to the species of the Spike-in Chromatin (Drosophila); cited in >25 publications (https://www.activemotif.com/
catalog/1091/chip-normalization) 
 
Anti-H3K4me3  (Active Motif, #39159): according to the manufacturer, this Histone H3 trimethyl Lys4 (H3K4me3) polyclonal antibody 
was raised against a peptide including trimethyl-lysine 4 of histone H3 and its specificity was confirmed by dot bot analysis (https://
www.activemotif.com/catalog/details/39159/histone-h3-trimethyl-lys4-antibody-pab); it has been validated for ChIP by modENCODE 
(https://compbio.med.harvard.edu/antibodies/antibodies/84). 
 
Anti-H3K27me3  (Millipore, #07-449): according to the manufacturer, this polyclonal antibody is dot blot tested for trimethylated 
lysine 27 specificity and validated in immunoprecipitation (https://www.merckmillipore.com/DE/de/product/Anti-trimethyl-Histone-
H3-Lys27-Antibody,MM_NF-07-449?ReferrerURL=https%3A%2F%2Fwww.google.com%2F#); it has been validated for ChIP-Seq by 
modENCODE (https://compbio.med.harvard.edu/antibodies/antibodies/57). 
 
Anti-H3K9me3 (Cell Signaling, #13969): according to the manufacturer, this monoclonal antibody detects endogenous levels of 
histone H3 when tri-methylated on Lys9. It shows some cross-reactivity with histone H3 that is di-methylated on Lys9, but does not 
cross-react with non-methylated or mono-methylated histone H3 Lys9. This antibody does not detect tri-methyl histone H3 Lys9 
when the adjacent Ser10 residue is phosphorylated during mitosis. In addition, this antibody does not cross-react with methylated 
histone H3 Lys4, Lys27, Lys36, or Lys79. This antibody has been validated using SimpleChIP® Enzymatic Chromatin IP Kits. (https://
www.cellsignal.com/products/primary-antibodies/tri-methyl-histone-h3-lys9-d4w1u-rabbit-mab/13969); cited in >112 publications. 
 
Anti-POLR3G/RPC7α  (Santa Cruz, #sc21754): according to the manufacturer, this monoclonal antibody raised against recombinant 
human RPC32/POLR3G/RPC7α subunit of RNA polymerase III and cited in >6 publications (https://www.scbt.com/p/pol-iii-rpc32-
antibody-c32-1). Additional validation we performed included Western blotting (single band at the expected MW of POLR3G and its 
substantial decrease upon POLR3G knockdown by CRISPRi) and  extensive characterization of ChIP-Seq datasets (presence of clearly 
defined strong peaks at Pol III target genes and absence of ChIP signal from other genomic regions). 
 
Anti-BRF1 (Abcam, #ab264191): according to the manufacturer, this polyclonal antibody was raised against a synthetic peptide within 
human BRF1 aa 627-677 (https://www.abcam.com/products/primary-antibodies/brf1-antibody-ab264191.html). Additional 
validation we performed included Western blotting (single band at the expected MW of BRF1 and its substantial decrease upon BRF1 
knockdown by CRISPRi) and  extensive characterization of ChIP-Seq datasets (presence of clearly defined strong peaks at Pol III target 
genes and absence of ChIP signal from other genomic regions, inlcuding RNU6-1, at which Pol III is assembled via BRF2). 
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Anti-MAF1 (Santa Cruz; #sc-515614 X): according to the manufacturer, this monolconal antibody specific for an epitope mapping 
between amino acids 99-122 within an internal region of MAF1 of human origin; cited in 3 publications (https://www.scbt.com/p/
maf1-antibody-h-2). Additional validation we performed included Western blotting  (single band or smear at the expected MW of 
MAF1 depending on phosphorylation status and its substantial decrease upon MAF1 knockdown by CRISPRi). 
 
Anti-phospho-4E-BP1 (Cell Signaling, #2855T): according to the manufacturer, this monoclonal antibody detects endogenous levels of 
4E-BP1 only when phosphorylated at Thr37 and/or Thr46. This antibody may cross-react with 4E-BP2 and 4E-BP3 when 
phosphorylated at equivalent sites; cited in >1680 publications (https://www.cellsignal.com/products/primary-antibodies/
phospho-4e-bp1-thr37-46-236b4-rabbit-mab/2855). Additional validation we performed included Western blotting  (several bands at 
the expected MW of phoshorylated 4E-BP1 and the disappearance of a subset of those upon mTORC1 inhibition by Torin 1 
treatment). 
 
Anti-phospho-p70 S6 Kinase (T389)  (Cell Signaling, #9206S): according to the manufacturer, this monoclonal antibody detects 
endogenous levels of p70 S6 kinase only when phosphorylated at Thr389. This antibody also detects p85 S6 kinase when 
phosphorylated at the analogous site (Thr412) and possibly S6KII phosphorylated at Thr388; cited in >530 publications (https://
www.cellsignal.com/products/primary-antibodies/phospho-p70-s6-kinase-thr389-1a5-mouse-mab/9206?site-search-
type=Products&N=4294956287&Ntt=%239206s&fromPage=plp&_requestid=2582991). Additional validation we performed included 
Western blotting  (bands at the expected MW of phoshorylated p70 and p85 S6 kinases and the disappearance upon mTORC1 
inhibition by Torin 1 treatment). 
 
Anti-4E-BP1 (Cell Signaling, #9644): according to the manufacturer, this monoclonal antibody detects endogenous levels of total 4E-
BP1 protein from human origin; cited in > 1116 publications (https://www.cellsignal.com/products/primary-antibodies/4e-
bp1-53h11-rabbit-mab/9644?site-search-type=Products&N=4294956287&Ntt=%239644%29&fromPage=plp&_requestid=2583398). 
 
Anti-p70 S6 Kinase (Cell Signaling, #2708T):  according to the manufacturer, this monoclonal antibody detects endogenous levels of 
total p70 S6 kinase protein. The antibody also recognizes p85 S6 kinase; cited in >1500 publications (https://www.cellsignal.com/
products/primary-antibodies/p70-s6-kinase-49d7-rabbit-mab/2708?site-search-type=Products&N=4294956287&Ntt=%232708t%
29%3A&fromPage=plp&_requestid=2583783). 
 
Anti-vinculin (Cell Signaling; #13901): according to the manufacturer, this monoclonal antibody recognizes endogenous levels of total 
vinculin protein. This antibody also reacts with metavinculin, a 145 kDa splice variant of vinculin; cited in >390 publications (https://
www.cellsignal.com/products/primary-antibodies/vinculin-e1e9v-xp-rabbit-mab/13901?site-search-
type=Products&N=4294956287&Ntt=%2313901%29%3A&fromPage=plp&_requestid=2584007). 
 
 
 
 
 

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The hiPSC HPSI0214i-kucg_2 (male) and HPSI0214i-wibj_2 (female) cell lines were sourced from the HipSci Consortium 
(https://www.hipsci.org/) through the European Collection of Authenticated Cell Cultures (ECACC). HEK 293T/17 cells were 
obtained from ATCC (CRL-11268). Lenti-X™ 293T cells were obtained from Takara Bio (#632180).

Authentication hiPSC, NPC, neurons, and cardiomyocytes were authenticated by the analysis of marker gene expression in RNA-seq datasets 
and the presence of the respective proteins by fluorescence microscopy. HEK 293T/17 and Lenti-X™ 293T cells were not 
authenticated.

Mycoplasma contamination All cell lines used in this study were tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified lines were used.

Plants
Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.



6

nature portfolio  |  reporting sum
m

ary
April 2023

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227928 
(reviewer token: mdmzwugkhputxkz)

Files in database submission Too many files to list, please see GEO accession.

Genome browser session 
(e.g. UCSC)

NA

Methodology

Replicates All ChIP-seq experiments were performed on two biological replicates per cell type examined in this study, with the exception of 
H3K27me3 ChIP-seq experiments and H3K4me3 ChIP-Seq in NPC, which were performed as single replicates. 

Sequencing depth ChIP-seq library sequencing was performed on an Illumina NovaSeq platform, with 110bp paired-end reads. All libraries had > 30 
million reads and 60-76% uniquely mapped reads per library. Full details below: 
 
Sample Reads Uniquely mapped number Uniquely mapped % 
WT_RPC1_k_hiPSC_rep1 80,515,257 54,829,218 68.10% 
WT_RPC1_k_hiPSC_rep2 83,868,794 57,410,834 68.45% 
WT_RPC1_w_hiPSC_rep1 56,632,856 37,844,794 66.82% 
WT_RPC1_w_hiPSC_rep2 55,982,708 37,859,040 67.63% 
WT_RPC1_k_NPC_rep1 101,693,829 71,746,094 70.55% 
WT_RPC1_k_NPC_rep2 81,257,191 57,657,985 70.96% 
WT_RPC1_k_neurons_rep1 98,243,649 65,871,592 67.05% 
WT_RPC1_k_neurons_rep2 126,844,321 87,688,888 69.13% 
WT_RPC1_k_CM_rep1 84,380,879 58,631,896 69.48% 
WT_RPC1_k_CM_rep2 77,730,654 55,015,449 70.78% 
WT_RPC1_HEK293T_rep1 75,085,959 51,484,833 68.57% 
WT_RPC1_HEK293T_rep2 69,435,742 50,403,901 72.59% 
WT_BRF1_k_hiPSC_rep1 69,651,303 42,859,623 61.53% 
WT_BRF1_k_hiPSC_rep2 65,541,911 47,193,717 72.01% 
WT_BRF1_k_NPC_rep1 62,636,853 43,866,556 70.03% 
WT_BRF1_k_NPC_rep2 60,150,585 42,949,150 71.40% 
WT_BRF1_k_neurons_rep1 61,790,148 43,711,076 70.74% 
WT_BRF1_k_neurons_rep2 66,923,872 45,695,831 68.28% 
WT_BRF1_k_CM_rep1 56,767,496 38,857,672 68.45% 
WT_BRF1_k_CM_rep2 70,591,953 48,701,750 68.99% 
WT_H3K4me3_k_hiPSC_rep1 79,476,847 54,218,854 68.22% 
WT_H3K4me3_k_hiPSC_rep2 66,452,058 43,025,129 64.75% 
WT_H3K4me3_k_NPC_rep1 70,304,132 50,679,818 72.09% 
WT_H3K4me3_k_neurons_rep1 87,149,242 61,670,227 70.76% 
WT_H3K4me3_k_neurons_rep2 62,893,308 44,984,001 71.52% 
WT_H3K4me3_k_CM_rep1 84,122,956 61,107,086 72.64% 
WT_H3K4me3_k_CM_rep2 92,281,152 66,120,972 71.65% 
WT_H3K27me3_k_hiPSC_rep1 78,287,550 48,793,806 62.33% 
WT_H3K27me3_k_NPC_rep1 128,691,861 94,942,665 73.78% 
WT_H3K27me3_k_neurons_rep1 86,560,571 59,314,104 68.52% 
WT_H3K27me3_k_CM_rep1 100,608,444 75,254,256 74.80% 
WT_H3K9me3_k_hiPSC_rep1 74,537,018 54,404,208 72.99% 
WT_H3K9me3_k_NPC_rep1 80,831,019 58,753,343 72.69% 
WT_H3K9me3_k_neurons_rep1 75,643,034 53,672,033 70.95% 
MAF1_ctrl_RPC1_k_hiPSC_rep1 75,815,702 51,798,493 68.32% 
MAF1_ctrl_RPC1_k_hiPSC_rep2 72,318,018 50,548,859 69.90% 
MAF1_KD_RPC1_k_hiPSC_rep1 72,099,050 52,361,187 72.62% 
MAF1_KD_RPC1_k_hiPSC_rep2 86,229,444 60,336,854 69.97% 
MAF1_ctrl_RPC1_k_NPC_rep1 86,098,574 58,337,615 67.76% 
MAF1_ctrl_RPC1_k_NPC_rep2 31,700,275 22,666,980 71.50% 
MAF1_KD_RPC1_k_NPC_rep1 70,440,589 47,449,928 67.36% 
MAF1_KD_RPC1_k_NPC_rep2 77,231,700 54,075,167 70.02% 
MAF1_ctrl_RPC1_k_NPCderived_rep1 80,812,139 58,324,605 72.17% 
MAF1_ctrl_RPC1_k_NPCderived_rep2 111,879,883 78,916,068 70.54% 
MAF1_KD_RPC1_k_NPCderived_rep1 96,711,579 66,940,061 69.22% 
MAF1_KD_RPC1_k_NPCderived_rep2 142,919,671 100,032,182 69.99% 
ProTGG_bodyEdit_RPC1_k_hiPSC_rep1 37,535,143 22,576,642 60.15% 
ProTGG_bodyEdit_RPC1_k_hiPSC_rep2 26,027,666 16,797,930 64.54% 
ProTGG_bodyEdit_RPC1_k_NPC_rep1 46,713,583 33,263,504 71.21% 
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ProTGG_bodyEdit_RPC1_k_NPC_rep2 58,655,074 41,317,943 70.44% 
ProTGG_upstreamEdit_RPC1_k_hiPSC_rep1 28,084,522 18,838,232 67.08% 
ProTGG_upstreamEdit_RPC1_k_hiPSC_rep2 30,599,758 20,104,269 65.70% 
ProTGG_upstreamEdit_RPC1_k_NPC_rep1 30,287,901 22,374,858 73.87% 
ProTGG_upstreamEdit_RPC1_k_NPC_rep2 34,271,870 24,755,841 72.23% 
ProTGG_bodyEdit_BRF1_k_hiPSC_rep1 81,161,914 60,397,498 74.42% 
ProTGG_bodyEdit_BRF1_k_hiPSC_rep2 96,259,734 70,116,314 72.84% 
ProTGG_bodyEdit_BRF1_k_NPC_rep1 49,297,297 37,661,883 76.40% 
ProTGG_bodyEdit_BRF1_k_NPC_rep2 62,869,462 46,707,897 74.29% 
ProTGG_upstreamEdit_BRF1_k_hiPSC_rep1 65,353,550 47,632,397 72.88% 
ProTGG_upstreamEdit_BRF1_k_hiPSC_rep2 68,648,862 51,492,865 75.01% 
ProTGG_upstreamEdit_BRF1_k_NPC_rep1 64,534,453 48,190,454 74.67% 
ProTGG_upstreamEdit_BRF1_k_NPC_rep2 44,920,325 28,873,475 64.28% 
WT_RPC7a_k_hiPSC_rep1 28,173,190 18,642,449 66.17% 
WT_RPC7a_k_hiPSC_rep2 33,137,234 24,040,817 72.55% 
POLR3G_ctrl_RPC1_k_hiPSC_rep1 58,112,790 39,861,878 68.59% 
POLR3G_ctrl_RPC1_k_hiPSC_rep2 65,067,136 46,919,952 72.11% 
POLR3G_KD_RPC1_k_hiPSC_rep1 62,249,136 43,208,968 69.41% 
POLR3G_KD_RPC1_k_hiPSC_rep2 57,939,450 42,281,264 72.97% 
POLR3G_ctrl_Rapa_RPC1_k_hiPSC_rep1 35,674,600 24,354,478 68.27% 
POLR3G_ctrl_Rapa_RPC1_k_hiPSC_rep2 37,339,132 25,634,855 68.65% 
POLR3G_KD_Rapa_RPC1_k_hiPSC_rep1 40,067,445 25,751,532 64.27% 
POLR3G_KD_Rapa_RPC1_k_hiPSC_rep2 44,752,449 29,952,037 66.93% 
w_hiPSC_Input_ChIP 74,182,549 54,018,380 72.82% 
NPC_Input_ChIP 91,246,822 69,375,429 76.03% 
CM_Input_ChIP 100,695,245 75,124,740 74.61% 
HEK293T_Input_ChIP 72,935,763 54,048,987 74.10%

Antibodies Anti-POLR3A/RPC1 antibody (Cell Signaling Technology, #12825) 
Anti-BRF1 (Abcam, #ab264191) 
Drosophila spike-in antibody (Active Motif, #61686)  
Anti-H3K4me3  (Active Motif, #39159) 
Anti-H3K27me3  (Millipore, #07-449)  
Anti-H3K9me3 (Cell Signaling, #13969) 
Anti-POLR3G/RPC7α  (Santa Cruz, #sc21754) 

Peak calling parameters Reads were aligned to the GRCh38 reference genome using STAR with allowing up to one mismatch per read, a maximum of ten 
alignment positions, end-to-end alignment, prohibited introns, only one alignment reported per read. 
Peak calling was performed on duplicate-filtered alignments using MACS callpeak v2.2.6, supplying ChIP input samples from 
HPSI0214i-kucg_2 for kucg-2 hiPSC and CM datasets, HPSI0214i-wibj_2 for wibj_2 hiPSC datasets, and from HPSI0214i-kucg_2-
derived NPC for NPC and neuron datasets with the following parameters:  
-g hs --slocal 500 -B --keep-dup all --nomodel --extsize {FRAG} --SPMR 
where {FRAG} corresponds to the estimated fragment size from cross-strand correlation analysis. For H3K4me3, H3K27me3 and 
H3K9me3 the --broad parameter was additionally specified to call broad peaks for these chromatin marks. 
Finally, peaks were filtered for blacklist regions as specified by the ENCODE GRCh38 blacklist file (https://www.encodeproject.org/
files/ENCFF356LFX/).

Data quality FastQC was run on all FASTQ files to assess general sequencing quality. Mapping stats were generated automatically by STAR and 
assessed.  For all ChIP-seq samples except H3K27me3, narrow peaks were called with an FDR < 0.05. Called peaks were validated for 
RPC1, RPC7, and BRF1 by assessing overlaps with predicted Pol III targets, specifically tRNAs, revealing high congruency with previous 
reports, and near-complete overlap of tRNA peaks between biological replicates. Full details of number of peaks given below: 
 
Sample Peaks 
WT_RPC1_k_hiPSC_rep1 1,113 
WT_RPC1_k_hiPSC_rep2 979 
WT_RPC1_w_hiPSC_rep1 666 
WT_RPC1_w_hiPSC_rep2 940 
WT_RPC1_k_NPC_rep1 348 
WT_RPC1_k_NPC_rep2 340 
WT_RPC1_k_neurons_rep1 341 
WT_RPC1_k_neurons_rep2 293 
WT_RPC1_k_CM_rep1 537 
WT_RPC1_k_CM_rep2 542 
WT_RPC1_HEK293T_rep1 882 
WT_RPC1_HEK293T_rep2 690 
WT_BRF1_k_hiPSC_rep1 1,088 
WT_BRF1_k_hiPSC_rep2 733 
WT_BRF1_k_NPC_rep1 334 
WT_BRF1_k_NPC_rep2 326 
WT_BRF1_k_neurons_rep1 325 
WT_BRF1_k_neurons_rep2 378 
WT_BRF1_k_CM_rep1 457 
WT_BRF1_k_CM_rep2 511 
WT_H3K4me3_k_hiPSC_rep1 25,807 
WT_H3K4me3_k_hiPSC_rep2 23,820 
WT_H3K4me3_k_NPC_rep1 19,780 
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WT_H3K4me3_k_neurons_rep1 18,340 
WT_H3K4me3_k_neurons_rep2 18,553 
WT_H3K4me3_k_CM_rep1 25,575 
WT_H3K4me3_k_CM_rep2 24,835 
WT_H3K27me3_k_hiPSC_rep1 34,934 
WT_H3K27me3_k_NPC_rep1 19,160 
WT_H3K27me3_k_neurons_rep1 110,582 
WT_H3K27me3_k_CM_rep1 76,439 
WT_H3K9me3_k_hiPSC_rep1 455,378 
WT_H3K9me3_k_neurons_rep1 342,506 
WT_H3K9me3_k_NPC_rep1 377,453 
MAF1_ctrl_RPC1_k_hiPSC_rep1 2,063 
MAF1_ctrl_RPC1_k_hiPSC_rep2 1,761 
MAF1_KD_RPC1_k_hiPSC_rep1 2,148 
MAF1_KD_RPC1_k_hiPSC_rep2 2,635 
MAF1_ctrl_RPC1_k_NPC_rep1 740 
MAF1_ctrl_RPC1_k_NPC_rep2 414 
MAF1_KD_RPC1_k_NPC_rep1 1,019 
MAF1_KD_RPC1_k_NPC_rep2 884 
MAF1_ctrl_RPC1_k_NPCderived_rep1 628 
MAF1_ctrl_RPC1_k_NPCderived_rep2 677 
MAF1_KD_RPC1_k_NPCderived_rep1 967 
MAF1_KD_RPC1_k_NPCderived_rep2 839 
ProTGG_bodyEdit_RPC1_k_hiPSC_rep1 1,338 
ProTGG_bodyEdit_RPC1_k_hiPSC_rep2 2,180 
ProTGG_bodyEdit_RPC1_k_NPC_rep1 282 
ProTGG_bodyEdit_RPC1_k_NPC_rep2 356 
ProTGG_upstreamEdit_RPC1_k_hiPSC_rep1 893 
ProTGG_upstreamEdit_RPC1_k_hiPSC_rep2 999 
ProTGG_upstreamEdit_RPC1_k_NPC_rep1 314 
ProTGG_upstreamEdit_RPC1_k_NPC_rep2 383 
ProTGG_bodyEdit_BRF1_k_hiPSC_rep1 722 
ProTGG_bodyEdit_BRF1_k_hiPSC_rep2 681 
ProTGG_bodyEdit_BRF1_k_NPC_rep1 253 
ProTGG_bodyEdit_BRF1_k_NPC_rep2 123 
ProTGG_upstreamEdit_BRF1_k_hiPSC_rep1 658 
ProTGG_upstreamEdit_BRF1_k_hiPSC_rep2 742 
ProTGG_upstreamEdit_BRF1_k_NPC_rep1  272 
ProTGG_upstreamEdit_BRF1_k_NPC_rep2  102 
WT_RPC7a_k_hiPSC_rep1 425 
WT_RPC7a_k_hiPSC_rep2 175 
POLR3G_ctrl_RPC1_k_hiPSC_rep1 906 
POLR3G_ctrl_RPC1_k_hiPSC_rep2 737 
POLR3G_KD_RPC1_k_hiPSC_rep1 725 
POLR3G_KD_RPC1_k_hiPSC_rep2 672 
POLR3G_ctrl_Rapa_RPC1_k_hiPSC_rep1 734 
POLR3G_ctrl_Rapa_RPC1_k_hiPSC_rep2 842 
POLR3G_KD_Rapa_RPC1_k_hiPSC_rep1 650 
POLR3G_KD_Rapa_RPC1_k_hiPSC_rep2 719 
w_hiPSC_Input_ChIP NA 
NPC_Input_ChIP NA 
CM_Input_ChIP NA 
HEK293T_Input_ChIP NA 
 

Software Software used to analyze ChIP-seq data includes: STAR, MACS, Trim Galore, Picard Tools, mmquant, deepTools, bedtools, 
ComplexHeatmap, DiffBind and ChIPpeakAnno. Software versions stated above.
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