Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hem25p is required for mitochondrial IPP transport in fungi

Abstract

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p—a mitochondrial glycine transporter required for haem biosynthesis—doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A targeted genetic screen identifies Hem25p as a potential transporter of CoQ precursors.
Fig. 2: Chemical genomic screens link HEM25 to the mevalonate pathway.
Fig. 3: Hem25p drives CoQ production independently of its role in haem biosynthesis.
Fig. 4: Hem25p enables IPP import in bacteria.
Fig. 5: Hem25p function is required for bacterial IPP import.
Fig. 6: Hem25p’s role in CoQ biosynthesis is conserved in fungi.

Similar content being viewed by others

Data availability

Proteomics raw files have been deposited in the MassIVE repository under accession nos. MSV000089127 and MSV000092359. The lipidomics datasets, including raw files and quantified peak areas, have been deposited in the MassIVE repository and can be accessed with accession no. MSV000092744. Data supporting the findings of this study and materials used in this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Lester, R. L. & Crane, F. L. The natural occurrence of coenzyme Q and related compounds. J. Biol. Chem. 234, 2169–2175 (1959).

    CAS  PubMed  Google Scholar 

  2. Jones, M. E. Pyrimidine nucleotide biosynthesis in animals: genes, enzymes and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49, 253–279 (1980).

    CAS  PubMed  Google Scholar 

  3. Frerman, F. E. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem. Soc. Trans. 16, 416–418 (1988).

    CAS  PubMed  Google Scholar 

  4. Guerra, R. M. & Pagliarini, D. J. Coenzyme Q biochemistry and biosynthesis. Trends Biochem. Sci. 48, 463–476 (2023).

    CAS  PubMed  Google Scholar 

  5. Emmanuele, V. et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch. Neurol. 69, 978–983 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Wang, Y. & Hekimi, S. The efficacy of coenzyme Q10 treatment in alleviating the symptoms of primary coenzyme Q10 deficiency: a systematic review. J. Cell. Mol. Med. 26, 4635–4644 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Awad, A. M. et al. Coenzyme Q10 deficiencies: pathways in yeast and humans. Essays Biochem. 62, 361–376 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. & Hekimi, S. Understanding ubiquinone. Trends Cell Biol. 26, 367–378 (2016).

    CAS  PubMed  Google Scholar 

  10. Gold, P. H. & Olson, R. E. Studies on coenzyme Q. The biosynthesis of coenzyme Q9 in rat tissue slices. J. Biol. Chem. 241, 3507–3516 (1966).

    CAS  PubMed  Google Scholar 

  11. Payet, L. A. et al. Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem. Biol. 23, 1241–1250 (2016).

    CAS  PubMed  Google Scholar 

  12. Casey, J. & Threlfall, D. R. Synthesis of 5‐demethoxyubiquinone‐6 and ubiquinone‐6 from 3‐hexaprenyl‐4‐hydroxybenzoate in yeast mitochondria. FEBS Lett. 85, 249–253 (1978).

    CAS  PubMed  Google Scholar 

  13. Momose, K. & Rudney, H. 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria. J. Biol. Chem. 247, 3930–3940 (1972).

    CAS  PubMed  Google Scholar 

  14. Tzagoloff, A. & Dieckmann, C. L. PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54, 211–225 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinson, K. P. et al. Defining intermediates and redundancies in coenzyme Q precursor biosynthesis. J. Biol. Chem. 296, 100643 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor, E. B. Functional properties of the mitochondrial carrier system. Trends Cell Biol. 27, 633–644 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Palmieri, F. & Monne, M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim. Biophys. Acta 1863, 2362–2378 (2016).

    CAS  PubMed  Google Scholar 

  18. Vogtle, F. N. et al. Landscape of submitochondrial protein distribution. Nat. Commun. 8, 290 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Morgenstern, M. et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozeir, M. et al. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem. Biol. 18, 1134–1142 (2011).

    CAS  PubMed  Google Scholar 

  21. Marobbio, C. M. T., Agrimi, G., Lasorsa, F. M. & Palmieri, F. Identification and functional reconstitution of yeast mitochondrial carrier for S‐adenosylmethionine. EMBO J. 22, 5975–5982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barkovich, R. J. et al. Characterization of the COQ5 gene from Saccharomyces cerevisiae. Evidence for a C-methyltransferase in ubiquinone biosynthesis. J. Biol. Chem. 272, 9182–9188 (1997).

    CAS  PubMed  Google Scholar 

  23. Jonassen, T. & Clarke, C. F. Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J. Biol. Chem. 275, 12381–12387 (2000).

    CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).

    CAS  PubMed  Google Scholar 

  25. Shi, X. et al. Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS. Nat. Commun. 13, 2483 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nilsson, R. et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10, 119–130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luk, E., Carroll, M., Baker, M. & Culotta, V. C. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc. Natl Acad. Sci. USA 100, 10353–10357 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Diessl, J. et al. Manganese-driven CoQ deficiency. Nat. Commun. 13, 6061 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Naranuntarat, A., Jensen, L. T., Pazicni, S., Penner-Hahn, J. E. & Culotta, V. C. The interaction of mitochondrial iron with manganese superoxide dismutase. J. Biol. Chem. 284, 22633–22640 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lunetti, P. et al. Characterization of human and yeast mitochondrial glycine carriers with implications for heme biosynthesis and anemia. J. Biol. Chem. 291, 19746–19759 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandez-Murray, J. P. et al. Glycine and folate ameliorate models of congenital sideroblastic anemia. PLoS Genet. 12, e1005783 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Johnson, A. et al. COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae*. J. Biol. Chem. 280, 31397–31404 (2005).

    CAS  PubMed  Google Scholar 

  33. Stefely, J. A. et al. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nat. Biotechnol. 34, 1191–1197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, A. Y. et al. Mapping the cellular response to small molecules using chemogenomic fitness signatures. Science 344, 208–211 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Desbats, M. A. et al. The COQ2 genotype predicts the severity of coenzyme Q10 deficiency. Hum. Mol. Genet. 25, 4256–4265 (2016).

    CAS  PubMed  Google Scholar 

  36. Allan, C. M. et al. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem. 290, 7517–7534 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hsieh, E. J. et al. Saccharomyces cerevisiae Coq9 polypeptide is a subunit of the mitochondrial coenzyme Q biosynthetic complex. Arch. Biochem. Biophys. 463, 19–26 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dufay, J. N., Fernández-Murray, J. P. & McMaster, C. R. SLC25 family member genetic interactions identify a role for HEM25 in yeast electron transport chain stability. G3 Genes Genomes Genet. 7, 1861–1873 (2017).

    CAS  Google Scholar 

  39. Ravaud, S. et al. Impaired transport of nucleotides in a mitochondrial carrier explains severe human genetic diseases. ACS Chem. Biol. 7, 1164–1169 (2012).

    CAS  PubMed  Google Scholar 

  40. Mifsud, J. et al. The substrate specificity of the human ADP/ATP carrier AAC1. Mol. Membr. Biol. 30, 160–168 (2012).

    PubMed  Google Scholar 

  41. Castegna, A. et al. Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 285, 17359–17370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nichols, N. N. & Harwood, C. S. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 179, 5056–5061 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Robinson, A. J., Overy, C. & Kunji, E. R. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Natl Acad. Sci. USA 105, 17766–17771 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guernsey, D. L. et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat. Genet. 41, 651–653 (2009).

    CAS  PubMed  Google Scholar 

  45. Heeney, M. M. et al. SLC25A38 congenital sideroblastic anemia: phenotypes and genotypes of 31 individuals from 24 families, including 11 novel mutations, and a review of the literature. Hum. Mutat. 42, 1367–1383 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rensvold, J. W. et al. Defining mitochondrial protein functions through deep multiomic profiling. Nature 606, 382–388 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thomas, P. D. et al. PANTHER: making genome‐scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    CAS  PubMed  Google Scholar 

  48. Subramanian, K. et al. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J. Cell Biol. 218, 1353–1369 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Eisenberg-Bord, M. et al. The endoplasmic reticulum-mitochondria encounter structure complex coordinates coenzyme Q biosynthesis. Contact 2, 2515256418825409 (2019).

    PubMed  Google Scholar 

  50. Vest, K. E., Leary, S. C., Winge, D. R. & Cobine, P. A. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein. J. Biol. Chem. 288, 23884–23892 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Boulet, A. et al. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J. Biol. Chem. 293, 1887–1896 (2018).

    CAS  PubMed  Google Scholar 

  52. Casey, J. & Threlfall, D. R. Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast. Biochim. Biophys. Acta 530, 487–502 (1978).

    CAS  PubMed  Google Scholar 

  53. Runquist, M., Ericsson, J., Thelin, A., Chojnacki, T. & Dallner, G. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J. Biol. Chem. 269, 5804–5809 (1994).

    CAS  PubMed  Google Scholar 

  54. Grünler, J., Ericsson, J. & Dallner, G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta 1212, 259–277 (1994).

    PubMed  Google Scholar 

  55. Keller, R. K. Squalene synthase inhibition alters metabolism of nonsterols in rat liver. Biochim. Biophys. Acta 1303, 169–179 (1996).

    PubMed  Google Scholar 

  56. Kardon, J. R. et al. Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 161, 858–867 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rondelli, C. M. et al. The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover. J. Biol. Chem. 297, 100972 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stefely, J. A. et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol. Cell 63, 608–620 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ziegler, M. et al. Welcome to the family: identification of the NAD+ transporter of animal mitochondria as member of the solute carrier family SLC25. Biomolecules 11, 880 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 588, 174–179 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kory, N. et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Girardi, E. et al. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun. 11, 6145 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Longtine, M. S. et al. Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    CAS  PubMed  Google Scholar 

  65. Wach, A., Brachat, A., Alberti‐Segui, C., Rebischung, C. & Philippsen, P. Heterologous HIS3 marker and GFP reporter modules for PCR‐targeting in Saccharomyces cerevisiae. Yeast 13, 1065–1075 (1997).

    CAS  PubMed  Google Scholar 

  66. Ismail, A. et al. Coenzyme Q biosynthesis: evidence for a substrate access channel in the FAD-dependent monooxygenase Coq6. PLoS Comput. Biol. 12, e1004690 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Sassa, S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse Friend leukemia virus-infected cells. J. Exp. Med. 143, 305–315 (1976).

    CAS  PubMed  Google Scholar 

  68. Sinclair, P. R., Gorman, N. & Jacobs, J. M. Measurement of heme concentration. Curr. Protoc. Toxicol. 00, 8.3.1–8.3.7 (1999).

    Google Scholar 

  69. Shishkova, E., Hebert, A. S., Westphall, M. S. & Coon, J. J. Ultra-high pressure (>30,000 psi) packing of capillary columns enhancing depth of shotgun proteomic analyses. Anal. Chem. 90, 11503–11508 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hebert, A. S. et al. Improved precursor characterization for data-dependent mass spectrometry. Anal. Chem. 90, 2333–2340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    CAS  PubMed  Google Scholar 

  72. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 13, 2513–2526 (2014).

    CAS  Google Scholar 

  73. Brademan, D. R. et al. Argonaut: a web platform for collaborative multi-omic data visualization and exploration. Patterns 1, 100122 (2020).

    PubMed  PubMed Central  Google Scholar 

  74. Meisinger, C., Pfanner, N. & Truscott, K. N. Isolation of yeast mitochondria. Methods Mol. Biol. 313, 33–39 (2006).

    CAS  PubMed  Google Scholar 

  75. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    CAS  PubMed  Google Scholar 

  76. Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

  77. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    PubMed Central  Google Scholar 

  80. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Veling, M. T. et al. Multi-omic mitoprotease profiling defines a role for Oct1p in coenzyme Q production. Mol. Cell 68, 970–977 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Pagliarini laboratory and K. Henzler-Wildman for helpful discussions and insights throughout this project. This work was supported by NIH R35 GM131795 (D.J.P.), P41 GM108538 (J.J.C. and D.J.P.), F31 AG064891 (J.T.), T32 GM140935 (J.T.), T32 DK007120 (S.W.R.) and the BJC Investigator Program (D.J.P.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was provided by J.T. and D.J.P, methodology by J.T., R.M.G., S.W.R., Z.F., K.A.O. and D.J.P., formal analysis by J.T., R.M.G., S.W.R., Z.F., L.K.M., E.S. and K.A.O., investigations by J.T., R.M.G., S.W.R., Z.F., L.K.M., E.S. and K.A.O, funding acquisition by D.J.P. and supervision by J.J.C. and D.J.P. The original draft was written by J.T. and D.J.P., and review and editing was carried out by J.T., R.M.G., S.W.R., Z.F., L.K.M., E.S., K.A.O., J.J.C. and D.J.P.

Corresponding author

Correspondence to David J. Pagliarini.

Ethics declarations

Competing interests

J.J.C. is a consultant for Thermo Fisher Scientific, 908 Devices and Seer. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Hem25p drives CoQ production independently of its role in heme biosynthesis.

a, Relative protein abundances of hem25∆ cells compared to WT cells versus statistical significance. CoQ biosynthetic proteins and Complex Q proteins are highlighted. Raw data from the Y3K dataset33 (respiration-RDR condition) are displayed as the mean from three biologically independent samples with two-sided Student’s t-test used. b, Relative transcript abundances of CoQ biosynthetic genes from hem25∆ with ALA supplementation compared to WT cells without ALA supplementation (mean ± SD, n = 3 biologically independent samples). c, Relative CoQ6 abundances in WT and hem25∆ yeast. Cells were treated with either vehicle (ethanol) or 10 µM CoQ6. CoQ6 supplementation raised the cellular CoQ levels of WT and hem25∆ yeast to similar levels (p = 0.3642 WT+CoQ6 vs hem25∆+CoQ6, mean ± SD, n = 3 biologically independent samples). d, Relative protein abundances of WT cells with CoQ6, hem25∆ cells without CoQ6, and hem25∆ cells with CoQ6 compared to WT cells without CoQ6 (mean, n = 3 biologically independent samples, two-sided Student’s t-test). e, Relative abundance of unlabeled PPHB and CoQ in WT, hem25∆, coq6∆, and coq6hem25∆ yeast from the experiment in Fig. 2d (mean ± SD, n = 3 biologically independent samples); ND, not detected. f, Normalized abundance of unlabeled PPHB levels in isolated coq6∆ and coq6hem25∆ mitochondria (mean ± SD, n = 3 biologically independent samples). g, Coq1p levels in isolated mitochondria from each replicate, assessed by immunoblotting. Source numerical data and unprocessed blots are available in source data.

Source data

Extended Data Fig. 2 4-HB import by pcaK and unadjusted IPP uptake kinetics.

a, Immunoblot for MBP-Hem25p, MBP-SLC25A38, and MBP-Yhm2p in E. coli membranes preparations. b, Steady-state kinetics of [1-14C]-IPP uptake in cells expressing MBP-Hem25p or the empty vector. Initial rates (nmol/min) values represent the mean ± SD of three biologically independent samples. c, Time course of 50 µM [phenyl-14C6]-4-HB uptake by E. coli cells expressing the Pseudomonas putida PcaK or the empty vector (*p = 0.0002, **p = 0.0042, ***p = 0.0006, ****p = 0.0011 empty vector vs pcaK, mean ± SD, n = 3 biologically independent samples, two-sided Student’s t-test). Source numerical data and unprocessed blots are available in source data.

Source data

Extended Data Fig. 3 Hem25p function is required for CoQ biosynthesis.

a, Relative PPHB abundances in hem25∆ yeast carrying WT and mutant HEM25FLAG constructs under the control of the endogenous HEM25 promoter. Levels are relative to WT yeast carrying the empty expression vector (*p = 0.0011, **p = 0.0006, ***p = 0.0116, ****p = 0.0009 HEM25FLAG vs mutants or empty vector, mean ± SD, n = 3 biologically independent samples, two-sided Student’s t-test). b, c, Immunoblots of whole cell lysates (b) or isolated mitochondria (c) from WT, coq6∆, or hem25∆ cells expressing various EV and Hem25p-FLAG constructs under the control of the endogenous HEM25 promoter. d, e, Relative CoQ (d) and PPHB (e) abundances in hem25∆ yeast carrying WT and mutant HEM25FLAG constructs under the control of the constitutive GPD promoter. Levels are relative to WT yeast carrying the empty expression vector (*p = 0.0006, **p = 0.0005, ***p = 0.0009, ****p = 0.0019, #p = 0.0012, ##p = 0.0014, ###p = 0.0012, ####p = 0.0012 HEM25FLAG vs mutants or empty vector, mean ± SD, n = 3 biologically independent samples, two-sided Student’s t-test). f, g, Immunoblots of whole cell lysates (f) or isolated mitochondria (g) from WT, coq6∆, or hem25∆ cells expressing various EV and Hem25p-FLAG constructs under the control of the constitutive GPD promoter. h, Time course of 50 µM [1-14C]-IPP uptake by E. coli cells expressing WT MBP-Hem25p, mutant MBP-Hem25p, or the empty vector (*p = 0.0494, **p = 0.0023, ***p = 0.0136, ****p = 0.0063 empty vector vs WT, mean ± SD, n = 3 biologically independent samples, two-sided Student’s t-test). i, Immunoblot for WT and mutant MBP-Hem25p in E. coli membranes preparations. j, k Normalized abundance of unlabeled OPP (j) and CoQ8 (k) in E. coli cells expressing the EV, WT MBP-Hem25p, or the R181P MBP-Hem25p mutant (mean ± SD, n = 3 biologically independent samples). Source numerical data and unprocessed blots are available in source data.

Source data

Extended Data Fig. 4 SLC25A38 does not contribute to CoQ biosynthesis.

a, Normalized PPHB abundance in hem25∆ cells expressing Hem25p-FLAG or SLC25A38. (mean ± SD, n = 3 biologically independent samples) b, Relative lipid abundances in hem25∆ yeast compared to WT versus statistical significance with CoQ10 and the CoQ10 biosynthetic intermediate demethoxy-coenzyme Q (DMQ10,) highlighted. c, Relative protein abundance SLC25A38KO cells compared to WT cells versus statistical significance with CoQ-related (COQ3-COQ9) and OxPhos-related proteins highlighted. For panels (b) and (c), raw lipidomic and proteomic data, respectively, from the MITOMICS resource46 are displayed as the mean from three independent samples with two-sided Welch’s t-test used. Source numerical data are available in source data.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1

Reporting Summary

Peer Review File

Supplementary Table 1

Combined file containing all Supplementary Tables. Table 1. Primers for qPCR of COQ genes. Table 2. Plasmid and fusion protein sequences for bacterial uptake assays. Table 3. Primers used in this Study for site-directed mutagenesis. Table 4. Primers used in this Study for amplification of HEM25 or the promoter region.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig./Table 1

Statistical source data.

Source Data Extended Data Fig./Table 2

Unprocessed western blots.

Source Data Extended Data Fig./Table 3

Statistical source data.

Source Data Extended Data Fig./Table 4

Unprocessed western blots.

Source Data Extended Data Fig./Table 5

Statistical source data.

Source Data Extended Data Fig./Table 6

Unprocessed western blots.

Source Data Extended Data Fig./Table 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, J., Guerra, R.M., Rogers, S.W. et al. Hem25p is required for mitochondrial IPP transport in fungi. Nat Cell Biol 25, 1616–1624 (2023). https://doi.org/10.1038/s41556-023-01250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-023-01250-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing