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Specificity within the ubiquitin-proteasome systemis primarily achieved
through E3 ubiquitin ligases, but for many E3s their substrates—and in
particular the molecular features (degrons) that they recognize—remain
largely unknown. Current approaches for assigning E3s to their cognate
substrates are tedious and low throughput. Here we developed a multiplex
CRISPR screening platformto assign E3 ligases to their cognate substrates
atscale. A proof-of-principle multiplex screen successfully performed
~-100 CRISPR screens in asingle experiment, refining known C-degron
pathways and identifying an additional pathway through which Cul2™®
targets C-terminal proline. Further, by identifying substrates for Cul
Cul2/PPBP2 Cyl3°AN, Cul3KHH8, Cul3XHHLB and Cul3™HHS, we demonstrate that
the approachis compatible with pools of full-length protein substrates of
varying stabilities and, when combined with site-saturation mutagenesis,
can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR
screening will accelerate our understanding of how specificity is achieved
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within the ubiquitin—-proteasome system.

The degradation of intracellular proteins plays a central role in the
regulation of a myriad of cellular processes'. The ubiquitin—protea-
some system (UPS) is one of the primary routes through which the
cell achieves selective protein degradation, wherein proteins are
tagged with ubiquitin that signals for their degradation by the pro-
teasome. Typically, E3 ubiquitin ligases directly recognize protein
substrates for ubiquitylation and are thus the primary determinants
of specificity within the UPS. This is thought to be achieved largely
through their ability to selectively recognize specific molecular
features of their substrates, which are known as degrons. Although
our knowledge remains sparse, the majority of known degrons com-
prise short linear motifs lying in accessible regions of proteins’.
Degrons can either act constitutively, promoting continuous deg-
radation of the protein, or conditionally, allowing protein turno-
ver to be regulated through post-translational modifications such
as phosphorylation®.

The human genome encodes >600 E3 ubiquitin ligases, which act
post-translationally to regulate the activity and stability of the entire
proteome®. Given this vast complexity, one of the central challenges
in the field is the identification of UPS substrates and delineation of
their cognate E3 ligases; indeed, for many E3s their substrates remain
unknown. Proteomic techniques have traditionally been used to define
the substrates of E3 ligases, but these remain labour intensive and low
throughput and, in the case of co-immunoprecipitation approaches,
may fail to detect transient interactions’. We have pioneered a genetic
approach called Global Protein Stability (GPS)®, which allows for the
simultaneous stability profiling of pools of thousands of substrates.
GPSisalentiviral platforminwhichlibraries of either short peptides or
full-length openreading frames (ORFs) are fused to green fluorescent
protein (GFP). Upon expressionin human cells, the relative expression
ofthe GFP-fusion proteinrelative toaDsRed internal control expressed
from the same construct can be used to infer the stability (that s, the
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Fig.1|Design of the multiplex CRISPR screening platform. a, Individual
FACS-based CRISPR screens are highly effective at identifying the cognate E3
ligase for unstable substrates tagged with a fluorescent protein such as GFP, but
suffer from limited throughput as they are only capable of analysing a single
substrate per screen. b, In contrast, multiplex CRISPR screening aims to identify
the cognate E3 ligases for tens or hundreds of substrates in a single experiment.
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ligases on the same lentiviral vector, cells expressing stabilized substrates paired
with an sgRNA targeting the cognate E3 ligase can be enriched by FACS and the
combination identified by paired-end sequencing. LTR, long terminal repeat;
Pcwy, human cytomegalovirus promoter; IRES, internal ribosome entry site; Ppcy,
phosphoglycerate kinase promoter; WPRE, Woodchuck Hepatitis Virus post-
transcriptional regulatory element.

lifetime in cells) of the fusion protein. In a library format, cells are
sorted using fluorescence-activated cell sorting (FACS) into a series
of bins based on the stability of the fusion proteins, which can then be
deconvoluted by next-generation sequencing toyield a stability profile
foreachindividual substrate. The GPS system has been used by us and
otherstoidentify substrates of Cullin-RING ligases (CRLs) "%, targets of
molecularglues’, quality control substrates'’, N-terminal degrons™ and
C-terminal degrons™. However, despite its power in identifying UPS
substrates, assigning the E3 ligase responsible requires a clustered
regularly interspaced short palindromic repeats (CRISPR) screen to
be performed on each individual GFP-fusion substrate. The need to
perform CRISPR screens individually severely limits the throughput
of the approach, as realistically only a handful of substrates can be
characterized in this manner at once.

In this Technical Report, we developed a multiplexed CRISPR
screening platform that allows the simultaneous mapping of E3 ligases
to hundreds of substrates in parallel. We demonstrate its utility by
performing multiplexed CRISPR screens using substrate libraries
comprising both short peptides and full-length protein substrates, and
we map individual degron motifs using site-saturation mutagenesis.

Results

Design of a multiplex CRISPR screening platform

CRISPR screens represent a powerful approach for assigning E3 ubi-
quitin ligases to their cognate substrates. Typically, cells expressing

anunstable substrate tagged with GFP are transduced with Cas9 and a
library of CRISPR single guide RNAs (sgRNAs) targeting, for example,
allknown E3 ubiquitin ligases (for instance, ref. 11). CRISPR-mediated
disruption of the cognate E3 ligase will result in stabilization of the
substrate and hence anincrease in GFP fluorescence; these cellscanbe
isolated by FACS and the identity of the guide RNAs enriched in these
cells determined by polymerase chain reaction (PCR) amplification
followed by Illumina sequencing (Fig. 1a). This approach has proven
extremely successful across many laboratories, but is fundamentally
limited in scale as only one substrate can be assayed per screen. Thus,
we set out to adapt this approach to develop a platform that would
permit high-throughput identification of E3 ligase substrates.

Our multiplex CRISPR screening approach combines the GPS
expression screening technique with loss-of-function CRISPR screens
to identify the E3 ligases responsible for the instability of GFP-fusion
proteins. We reasoned that we could perform many CRISPR screens in
parallel by encoding both the GFP-tagged substrates and the CRISPR
sgRNAs together on the same vector. Starting with a standard GPS
lentiviral expression vector, we first cloned a library of substrates
as C-terminal fusions to GFP; subsequently we cloned in a library of
CRISPR sgRNAs driven by the U6 promoter (Fig. 1b). Following trans-
duction of Cas9-expressing target cells at low multiplicity of infection
and puromycin selection to eliminate untransduced cells, each cell in
theresulting population expresses one GFP-tagged substrate and one
sgRNA targeting an E3 ubiquitin ligase. Inthe vast majority of cells, the
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Fig. 2| A proof-of-principle multiplex CRISPR screen recapitulates known
C-degron pathways. a, Schematic representation of the dual GPS/CRISPR
multiplex screening library, in which the GFP-fusion substrates were a pool of
peptides enriched for C-terminal degrons targeted by Cul2 or Cul4 E3 ligase
complexes, and the CRISPR sgRNA library targeted either Cul2/5 or Cul4 adaptors.
b,c, Identification of KLHDC2 substrates bearing C-terminal di-glycine motifs: the

All targeted CRL substrate adaptors

All targeted CRL substrate adaptors

multiplex screen results for six example substrates, all of which terminate with
two glycine residues (b); the performance of sgRNAs targeting KLHDC2 across
allsubstrates (c). d,e, Cullinadaptors are correctly assigned to their cognate
C-terminal degrons. A range of peptide substrates bearing canonical C-degron
motifs targeted by Cul2 (d) and Cul4 (e) adaptors were successfully identified.
Allsource numerical data are availablein Supplementary Tables 1-6.

sgRNA will targetanirrelevant E3 ligase that will not affect the stability
ofthe GFP-fusion protein; however, inrare cells the sgRNA will disrupt
the cognate E3 ligase, resulting in stabilization of the fusion protein
and an increase in GFP fluorescence. Cells expressing stabilised sub-
strates can be isolated by FACS, followed by PCR amplification and
paired-end sequencing to identify the GFP-fusion substrate (forward
read) together withthe E3 ligase targeted by the sgRNA (reverse read)
(Fig. 1b). The identity of peptide substrates is revealed by directly
sequencing the nucleotides that encode them, whereas full-length
proteins are identified by sequencing an associated DNA barcode
located at their 3’ end.

A proof-of-principle multiplex CRISPR screen

To validate that our platform was capable of successfully perform-
ing many simultaneous CRISPR screens, we leveraged our previ-
ous findings delineating C-terminal degron pathways' to design a

proof-of-principle screen. Previously we generated pools of cells
expressing GPS constructs in which 23-mer peptides derived from
the C-termini of human proteins were fused to GFP and used FACS to
isolate cells expressing GFP-peptide fusions that were stabilized upon
expression of dominant-negative (DN) versions of Cul2and Cul4 (ref.12)
(Extended DataFig.1a-d). We extracted genomic DNA from these cells,
PCR-amplified the peptides encoded by the lentiviral GPS construct,
and cloned the resulting pool of PCR products into the GPS vector. To
create the dual GPS/CRISPR vector for multiplex screening, we subse-
quently clonedinan sgRNA expression cassette comprisingalibrary of
guidestargeting either all known Cul2/5 substrate adaptors (96 genes)
or Cul4A/4B substrate adaptors (61 genes) (Fig. 2a and Extended Data
Fig.1e). We estimated that the complexity of the substrate library was
~100 peptidesineach case, resulting in amatrix of ~-100 peptides x 96
or 61 genes x 6 sgRNAs/gene =~50,000 substrate-guide combina-
tions. Weisolated the top ~5% of cells on the basis of the stability of the
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Fig. 3| Cul2"™® regulates a C-degron pathway specific for proline.

a-c, FEMIB substrates are highly enriched for C-terminal proline: screen results
for two example substrates (a), the performance of sgRNAs targeting FEM1B
across all substrates (b) and a tabulation of the sequences of all substrates for
which FEM1B was a significant hit (c), with terminal proline residues indicated in
red. d, Cycloheximide chase assays to monitor the degradation of theindicated
GPS substrates in control (sgAAVS1) or FEM1B knockout (sgFEM1B) cells by
immunoblot (IB). e,f, FEM1B targets C-terminal proline: C-terminal 23-mer

peptides derived from the indicated genes, either with (wild type, WT) or without
(AP) their terminal proline residue, were expressed in control (sgAAVS1) and
FEMIB knockout (sgFEMIB) cells in the context of the GPS system and their
stability measured by flow cytometry (e); full-length ORFs of the BEX family
terminatingin proline were more stable in FEM1B knockout cells (f). Immunoblot
and flow cytometry experiments were performed twice with similar results. All
source numerical data are available in Supplementary Tables 1-6; unprocessed
blots are available in source data.

GFP-peptide fusion (Extended Data Fig. 1f), amplified and sequenced
the lentiviral constructs, and then used the MAGeCK algorithm® to
identify substrate-guide RNA combinations enriched in the selected
cellsversus the unsorted starting population (Supplementary Table1).
We aimed to maintain at least 100-fold representation at each step,
resulting in a total of -5 million sorted cells.

Asaresultof our previous work on C-terminal degron pathways',
alarge number of known CRL adaptor-degron pairs served as posi-
tive controls. Overwhelmingly, substrates bearing known C-terminal
degronswere correctly assigned to their cognate adaptor (Fig. 2b-e).
KLHDC2, for example, was identified as asignificant hit for 11 peptide
substrates, the screen results for 6 of which are depicted in Fig. 2b.
Sevenofthese terminated with-GG*, the canonical KLHDC2 C-degron,
and two terminated with the highly similar motif-GA* (Fig. 2c). Analo-
gousresults were obtained for a variety of other Cul2 adaptors knownto
target C-terminal degrons (Supplementary Tables1-3):12 KLHDC3 sub-
strates and 4 KLHDC10 substrates respectively terminated with glycine
residues, while 18 APPBP2 substrates harboured RxxG motifs near their
C-terminus (one representative substrate for each is shownin Fig. 2d).
Inparallel, the Cul4 screenrevealed alarge number of substrates bearing

the canonical C-degron -EE* and -Rxx* motifs targeted by DCAF12
and TRPC4AP, respectively (Fig. 2e and Supplementary Tables 4-6).
Altogether, we estimate that we performed ~-100 successful CRISPR
screens in parallel.

FEMIB targets C-terminal proline

Due to the breadth of our multiplexing approach, not only did our
screen recapitulate known C-degron pathways, but it also revealed
additional insights. First, we uncovered an expanded repertoire of
C-terminal degrons targeted by Cul4°“A™2 and Cul4™"“**" In addition
to terminal -EE* motifs, we found asignificant number of DCAF12 sub-
strates that comprised aglutamicacid at the penultimate position but
harboured non-glutamic acid residues at their C-terminus, with sub-
strates terminatingin-EI*,-EM*and-ES* (Extended DataFig. 2a,b). Thus,
the most critical part of the C-terminal degron recognized by DCAF12
isthe glutamic acid at the -2 position, whichis consistent witharecent
proteomic analysis of DCAF12 substrates'. Similarly, our previous
definition of the TRPC4AP degron as an R-3 motif is too rigid; several
of the TRPC4AP degrons identified did not contain an arginine at the
-3 position, but instead harboured arginine residues at the —4 and/or
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Fig. 4 | FEM1B uses multiple pockets to bind diverse degrons. a-c, Structural
analysis of FEM1B-degron interactions: overview of existing structures of FEM1B
(purple) bound to the cysteine-rich substrate FNIP1 (yellow) or the Arg-ended
CDKS5R1 C-terminus (blue), compared with AlphaFold predictions of FEM1B
bound to arepresentative Pro-end degron (POLD2, orange) (a); the Arg/Pro-1
pocket of FEMIB (purple) is shown bound to the CDK5R1 Arg-end substrate (blue)
and the POLD2 Pro-end substrate (orange) (b); the aromatic-binding pocket of
FEMIB (purple) is shown bound to three substrates (orange) that each requires a
Phe, Trp or His to be recognized by FEM1B (c). d-f, Pro-ended FEMI1B substrates
require a hydrophobic residue -15-20 residues from the C-terminus for efficient
degradation. Saturation mutagenesis results for three representative Pro-ended
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substrates are shown, the C-terminus of PSMBS (d), the C-terminus of SNF8

(e) and the C-terminus of CCDC89 (f); the darker the red colour, the greater

the stabilizing effect of the mutation. The Add column indicates the effect of
appending each individual amino acid at the extreme C-terminus of the peptide
substrate. g, Evolutionary conservation of FEM1B binding pockets. The surface
of FEMIB (residues 86-400) is coloured by conservation on the basis of an
alignment of sequences from 12 diverse animal species. The sites for binding the
Pro (orange) and Arg (blue) C-termini, FNIP1 (yellow) and zinc ions (cyan), and
aromaticresidues (orange) are shown for reference. Source numerical dataare
available in Supplementary Table 7.

-5positions (Extended DataFig. 2¢,d). Most significantly, however, we
uncovered a large number of substrates targeted by FEMI1B (Fig. 3a,b
and Extended Data Fig. 2e), a Cul2 adaptor known to participate in
C-degronrecognition but for which adegron motifis not currently well
defined. Intriguingly, we noted that the majority of FEM1B substrates
terminated with a proline residue (Fig. 3b,c).

Tovalidate that FEM1B does indeed regulate a C-terminal degron
pathway specific for proline residues, we performed individual valida-
tion experiments using a panel of example C-terminal peptides fused
to GFP.Insupport of the multiplex CRISPR screening results, we found
thatall of the substrates were indeed stabilized upon ablation of FEM1B

(Fig.3d and Extended Data Fig. 2f); importantly, this effect required the
C-terminal proline residue (Fig. 3e). Furthermore, our GPS-ORFeome
screens (see below) identified full-length proteins of the BEX family as
Cul2substrates. As BEX proteins all terminate with C-terminal proline,
we hypothesized that they would be targeted by FEM1B, which we con-
firmed for BEX3 and BEX5 expressed in the context of the GPS system
(Fig. 3f).Interestingly, the BEX proteins have been recently described
as pseudosubstrates of FEM1B that regulates its activity in the reduc-
tive stress response pathway®, highlighting the utility of our approach
inidentifying important pathways. Thus, multiplex CRISPR screening
uncovered a Pro/C-degron pathway regulated by Cul2F&,
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comprising the top 540 ORFs exhibiting the greatest stabilization fromd (e);
comparative stability profiling was performed as depicted in b to assess the
stability of the library in cells expressing either an empty vector (grey) versus
C-terminally truncated DN versions of Cull (yellow), Cul2 (light green), Cul3
(light blue), Cul4A (pink), Cul4B (purple) or Cul5 (dark green) (f). Screen profiles
for four example substrates are shown. Source numerical data are available in
Supplementary Tables 8-12.

FEM1B uses multiple sites to recognize diverse degrons
As FEMIB has previously been shown to recognize C-terminal argi-
nine degrons'®'*'® and an internal cysteine-rich sequence”, we were
intrigued by its ability to target three seemingly distinct degrons. Thus,
we used AlphaFold to predict the mode of interaction of FEM1B with
C-terminal proline degrons and compared these predictions to existing
FEMI1B-substrate co-crystal structures'®*® (Fig. 4a and Extended Data
Fig. 3a). AlphaFold2 predicted that the C-terminal proline substrates
bind adeep pocketin FEM1B (Extended Data Fig. 3b). The proline side
chain interacts with several hydrophobic residues lining the FEM1B
pocket, while the C-terminal carboxylic acid of proline makes hydrogen
bonds with Ser122 and Argl26 of FEMI1B. This interactionis very similar
totheinteraction that FEM1B makes with C-terminal arginine substrates
(Fig. 4a,b), suggesting that this “~1 pocket” can accommodate both
proline and arginine C-terminal residues. Furthermore, both classes
of degron often contain leucine at the -3 position, which binds to a
nearby site on FEMI1B (Extended Data Fig. 3¢).

Intriguingly, the AlphaFold predictions also suggested that a
hydrophobic residue in the Pro-end peptide substrates bound a dis-
tinct site on FEMIB (Fig. 4a and Extended Data Fig. 3a). This residue is

located approximately 15-20 residues before the C-terminal proline.
Its side chainburies into an “aromatic-binding pocket” on the concave
surface of FEM1B, bound by hydrophobic residues lining the interior of
the pocket plus two glutamines on the outside of the pocket (Fig. 4¢).
We tested these predictions by performing saturation mutagenesis on
several Pro-ended substrates predicted to engage both pockets (Sup-
plementary Table 7). This revealed that both the C-terminal proline
and aninternal aromatic residue were generally required for efficient
degradation (Fig. 4d-f and Extended Data Fig. 3d), supporting the
structural models. Inmost cases the addition of any single amino acid at
the C-terminus abrogated degradation, demonstratingthe importance
of the proline residue being positioned at the extreme C-terminus.
Genetic complementation experiments in FEM1B knockout cells also
supported the structural models (Extended Data Fig. 4).

Thus, Pro-end substrates are predicted to bind FEMI1B using two
sites: the -1 pocket of FEM1Bbinds the C-terminal proline, while the aro-
matic pocket binds an aromatic residue approximately 35 A away. We
note thatadistinct region of FEMI1B binds the cysteine-rich degron of
FNIP1viathejoint coordination of two zincions® (Fig. 4a,g). Therefore,
FEMIB appearsto have at least three separate regions for recognizing
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Fig. 6| Amultiplex CRISPR screen to identify the cognate adaptorsrequired
for full-length protein substrates targeted by Cul3 complexes. a, Schematic
representation of the multiplex CRISPR screening vector, wherein ~100 full-
length ORFs targeted by Cul3 complexes were fused to the C-terminus of GFP,
and the CRISPR sgRNA library targeted known BTB adaptors. b, The multiplex
CRISPR screen was performed in two ways: in the 1-bin format (left), the top ~5%
of'the population was sorted into a single bin, while in the 6-bin format (right), a
pool of cells expressing stable substrates was spiked-in to broaden the stability
distribution of the library, followed by partitioning into six equal bins by FACS
to enable measurement of the stability of each ORF-sgRNA pair. ¢,d, Summary

of the screen results: the majority of screens identified CUL3 as a significant hit
(c); example results from successful screens, where both the 1-bin and 6-bin
approaches concordantly identified the same BTB adaptor (d). e,f, Validation
ofthe screen results: GAN was correctly identified as the BTB adaptor targeting
keratins that we validated in a panel of individual experiments by flow cytometry
(e),and KLHL15 targets ZNF511 as assayed by cycloheximide chase assaysin
control (sgAAVS1) versus KLHL15 knockout (sgKLHL15) cells (f). Immunoblot

(IB) and flow cytometry experiments were performed twice with similar results.
Source numerical dataare available in Supplementary Tables 13-17; unprocessed
blots are available in source data.

avariety of degrons, each bound in unique ways. Interestingly, the
Arg/Pro-1pocket and the aromatic-binding pocket are the most con-
served evolutionarily (Fig. 4g).

Multiplex CRISPR screens assign full-length substrates

Next, we set out to adapt the multiplex CRISPR screening platform to
allow the identification of E3 ubiquitin ligases targeting full-length
protein substrates. To generate a suitable pool of full-length protein
substrates targeted by CRLs, we began by performing a GPS screen
using the barcoded human ORFeome'>" (Fig. 5a). Comparative sta-
bility profiling in the presence and absence of MLN4924 (Fig. 5b),
a pan-CRL small molecule inhibitor®°, identified ~1,500 ORFs as
candidate CRL substrates in HEK-293T cells (Fig. 5c¢,d and Supple-
mentary Tables 8-10). An advantage of this system is that each ORF
is associated with on average approximately five unique barcodes,
thereby providing internal replicates; we observed strong concord-
ance between the stability profiles of each individual barcode asso-
ciated with the same ORF (Extended Data Fig. 5a). Furthermore,

we identified a range of known CRL substrates as positive controls
(Extended Data Fig. 5b).

Subsequently we focused on the top 540 ORFs that exhibited the
greatest degree of stabilization upon MLN4924 treatment. To identify
which Cullincomplex was responsible for their degradation, we gener-
ated abarcoded sublibrary containing these 540 ORFs (Extended Data
Fig. 5c) and performed a further GPS assay to compare their stability
in cells transduced with an empty vector versus those expressing DN
versions of Cull, Cul2, Cul3, Cul4A, Cul4B and Cul5 (Fig. 5e and Sup-
plementary Table 4). This assigned ~60% of the substrates to either
Cull, Cul2/5, Cul3 or Cul4A/4B complexes (Supplementary Tables 11
and 12); example profiles for positive control substrates are shown in
Fig. 5f. Thus, together these datasets represent arichresourceto guide
further exploration of the substrate repertoire regulated by CRLs.

As the largest number of substrates were targeted by Cul3 com-
plexes, we set out to identify the cognate BTB substrate adaptors
responsible. We selected -100 ORFs stabilized by DN Cul3 and cloned
themintoabarcoded GPS vector (Extended DataFig. 5¢c) together with
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Fig. 7| Systematic identification of linear motifs targeted by Cullin-RING E3
ubiquitin ligases. a-c, Schematic representation of the experimental strategy:
alentiviral GPSlibrary of peptides substrates was generated through microarray
oligonucleotide synthesis, wherein the same 540 ORFs exhibiting the greatest
degree of stabilization upon MLN4924 treatment were expressed as a series

of overlapping 24-mer tiles (a); comparative stability profilingin the presence
and absence of MLN4924 then identified GFP-peptide fusions which were
targeted by CRLs (b); and for the peptide substrates which exhibited the largest

| |
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Original residue Original residue

degree of stabilization, saturation mutagenesis was performed to quantify the
stability of a panel of mutants in which each residue was mutated to all other
possible residues, thereby defining degron motifs at amino acid resolution
(c).d-g, Example degron motifs targeted by Cullin-RING E3 ligases. Saturation
mutagenesis results for substrates derived from the C-terminus of ALKBH7 (d)
and internal peptides derived from ESRRA (e), MATN2 (f) and TOR1AIP2 (g) are
shown. Source numerical data are available in Supplementary Tables 18 and 19.

an sgRNA library targeting 95 Cul3 BTB adaptor proteins (4 sgRNAs
per gene) to form the dual GPS/CRISPR multiplex screening library
(Fig. 6a). For our initial multiplex screen with C-terminal peptides, all
ofthe substrates exhibited roughly the same stability (Extended Data
Fig.1f). Here, however, the Cul3 substrates exhibited a much broader
stability distribution (Extended Data Fig. 6a). To examine the optimal
approach in this setting, we performed the multiplex screen in two
different ways. In the 1-bin approach (Fig. 6b, left), we enriched for all
stabilized substrates by sorting the top ~5% into a single tube. In the
6-binapproach (Fig. 6b, right), we first artificially broadened the stabil-
ity of thelibrary by spikinginapool of cells expressing stable substrates
(“stablefiller”) toyield amore balanced stability distribution (Extended
Data Fig. 6b). This allowed the population to be partitioned into six
equal bins by FACS, allowing a stability measurement to be generated
for each ORF-sgRNA combination (Fig. 6b, right).

Both multiplex screening approaches successfully identified
CUL3 as a significant hit in most of the screens: 90/111 (81%) using
the 1-bin format, and 81/106 (76%) using the 6-bin format (Fig. 6¢
and Supplementary Tables 13-17). As a positive control, both sets of
screens identified Gigaxonin (GAN, also known as KLHL16)—which s
known to degrade a variety of intermediate filament proteins®*’—as

the cognate BTB adaptor responsible for the degradation of Keratin
(KRT)13, KRT15 and KRT16 (Fig. 6d,e). The screens also suggested
relationships between KLHL8 and the mediator complex subunit
MED27, and KLHL15 and the zinc finger protein ZNF511 (Fig. 6d,f).
Furthermore, KLHL9 and/or KLHL13, two paralogous BTB adaptors
sharing >90% identity, were identified as hits for multiple substrates
(Extended Data Fig. 6c,d). Thus, multiplex CRISPR screening can be
used to identify the cognate E3 ligases targeting full-length protein
substrates and can be successful irrespective of the stability profile
of the substrate pool.

Multiplex CRISPR screening to define degron motifs

We reasoned that by combining multiplex CRISPR screening with
saturation mutagenesis of peptide substrates, we could exploit the
platformto define the degron motifs recognized by E3 ligases at scale.
We started by mapping a set of degron motifs targeted by CRLs at amino
acid resolution. We synthesized an oligonucleotide library encoding
24-mer peptidestiling across the leading 540 CRL substrate ORFs that
we identified previously, cloned them into the lentiviral GPS vector
downstream of GFP, and then performed an initial stability screen in
the presence and absence of MLN4924 to define peptides harbouring
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Fig. 8| Amultiplex CRISPR screen assigns Cullin-RING E3 ligases to their
cognate degrons. a, Schematic representation of the multiplex CRISPR
screening vector, wherein peptides with mapped degrons were fused to the
C-terminus of GFP and the CRISPR sgRNA library targeted all known Cullin
substrate adaptors. b-e, Assigning Cullin-RING E3 ligases to their cognate linear
degrons. Data are shown for substrates derived from the C-terminus of CCDC89
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(b) and internal peptides derived from NECABI1 (c), EPB41L3 (d) and GMCL1 (e):
ineach case, the saturation mutagenesis results mapping the degron motif are
shown (left), alongside the multiplex CRISPR screen results after both one sort
and two sorts (right). Source numerical data are available in Supplementary
Tables20-38.

degron motifstargeted by CRLs (Fig. 7a and Supplementary Table 18).
For the peptides most strongly stabilized upon MLN4924 treatment,
we then went on to perform saturation mutagenesis GPS screens, in
which the stability of a panel of mutant versions of each peptide is
measured; each amino acid is mutated to all other possible amino acids,
thereby defining degron motifs at amino acid resolution (Fig. 7b,c and
Supplementary Table 19). We identified multiple classes of degrons:
C-terminal degrons (Fig. 7d and Extended DataFig. 7a), the vast majority
of which harboured known C-degron motifs'*; hydrophobic degrons,
rangingin size from seemingly individual tryptophan or phenylalanine
residues up to a panel of hydrophobic amino acids spread across ten
or more residues (Fig. 7e,f and Extended Data Fig. 7b,c); and a variety
of more complex degrons, composed of a variety of amino acids and
ranging from approximately four to eight consecutive amino acids in
size (Fig. 7g and Extended Data Fig. 7d).

Weselected ~80 CRL peptide substrates harbouring degron motifs
clearly defined by the saturation mutagenesis for multiplex CRISPR
screening. We divided the substrates into three groups based on their
stability (Extended DataFig. 8a), and generated three dual GPS/CRISPR
multiplex CRISPR screening libraries through the addition of alibrary
of sgRNAs targeting 259 known CRL adaptors (4 sgRNAs per gene)
(Fig. 8a). The screens were performed using the ‘1-bin” approach, with
the selected cells sorted twice: we anticipated that the earlier sort 1
wouldincrease thelikelihood of recovering potentially toxic mutations

that would drop out later, while the subsequent sort 2 might deliver
cleaner data owing to a purer population of selected cells (Supple-
mentary Tables 20-37).

The efficacy of thisapproach was supported by the correct identi-
fication of the cognate adaptor for multiple positive control peptides
harbouring C-terminal degrons: DCAF12 wasidentified as the CRL adap-
tor recognizing a C-terminal E-2 motif derived from the C-terminus of
KRT15 (Extended DataFig. 8b), and, further supporting the notion of a
Pro/C-degron pathway regulated by FEM1B, FEM1B wasidentified asthe
CRLadaptor targetinga peptide derived from the C-terminus of CCDC89
terminating witha prolineresidue (Fig. 8b). Multiple broad hydropho-
bic degrons were found to be targeted by the Cull adaptor FBXO38
(Fig. 8cand Extended DataFig. 8c), while the Cul3 adaptor KLHL15 was
responsible for targeting several of the more complex degrons that
mostly comprised F, R, L and P residues (Fig. 8d and Extended Data
Fig. 8d); this is consistent with an “FRY” degron motif that has been
previously characterized in two of its substrates, PP2A/B’p** and CtIP*.
We alsoidentified APPBP2 as the cognate CRL adaptor responsible for
recognition of adegron comprising twin cysteine residues (Fig. 8e). We
validated anumber of these E3 ligase-degron relationships identified
bythescreeninindividual experiments (Extended DataFig. 8e,f). Thus,
the application of multiplex CRISPR screening to peptide substrates
allows the identification of the cognate linear degrons recognized
byE3 ligases.
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Discussion

While there are numerous high-throughput approaches for studying
DNA and RNA biology on a systems-wide scale, similar approaches
for studying protein stability are lacking. Here we combine our GPS
expression screening system with loss-of-function CRISPR guide RNA
librariesin amultiplex format, allowing for the high-throughputiden-
tification of E3 ligase-substrate pairs. Inaddition to identifying many
previously studied degradative pathways, our multiplex technology
providesinsightsinto the substrate specificity for a panel of E3 ligases.

We focused our analysis on CRLs, a family of ~300 ubiquitin
ligases that are critical mediators of signalling and of the response
to cellular stressors?. Using a C-terminal peptide library enriched
in CRL substrates, we were able to update our understanding of
the C-degron pathways recognized by CRLs. First, we found that
Cul4PA™2 can recognize C-terminal peptides ending in -EI*, -EM*
and -ES* in addition to the canonical twin-glutamic acid -EE* motif.
Second, Cul4 ™ AP exhibits flexibility in its recognition of C-terminal
arginine degrons, asit targets substrates with arginine at the -5and
-4 positions in addition to those with arginine at the -3 position.
Third, Cul2"™® can recognize C-terminal degrons endingin proline.
APro/N-degron pathway was recently uncovered through which the
GID E3 ligase complex targets N-terminal proline®, indicating that
the same terminalresidue canactasadegronatboth the N-terminus
and C-terminus. This is similar to glycine''>* and arginine'>'*'"$,
residues which can also act as both N-degrons and C-degrons®.
Our results also highlight the flexibility of multiplex screening by
identifying E3s for both full-length proteins and short peptides. This
allowed us toidentify arange of substrates, many of which previously
unknown, recognized by Cul1®*38 Cul24P"8"2, Cul3%N, Cul3KHs,
Cu|3KLHL9/I3 and CUI3KLHLIS.

Our mutagenesis experimentsidentified awide variety of non-N/C-
terminal degron motifs recognized by CRLs. Among the diversity of
degrons are a variety of predominately hydrophobic motifs: a twin
cysteine motif recognized by Cul2**"®*? 3-5 hydrophobic residues
recognized by Cul3**""* and 8-12 hydrophobic residues across an-20
residue span recognized by Cul1™*%%, Although these hydrophobic
motifs could have regulatory or signalling roles in certain contexts,
we speculate that these degrons are unlikely to be accessible in the
context of a folded protein and hence are likely to be exploited for
quality control purposes. Indeed, exposed hydrophobicity is afeature
often used by quality control pathways to recognize proteins that are
unfolded, damaged or not paired with binding partners®. Consistent
with this, AlphaFold predictions suggest that many of the hydrophobic
degrons we identified are likely to exist in ordered structures whenin
their native context (Supplementary Table 18).

Insome cases, we observed that asingle E3 ubiquitin ligase canrec-
ognize multiple distinct degron motifs. The most prominent example
is Cul2"™8, which controls the response to reductive stress by targeting
FNIP1for degradation through recognition of a cysteine-rich degron®*.
FEMIB has also been shown to recognize C-terminal arginine'>'¢™%,
Here we show that FEM1B can additionally recognize substrates end-
ing with proline in conjunction with internal aromatic residues often
more than 15 amino acids away. Our analysis of these degrons using
AlphaFold together with saturation mutagenesis data suggest that
FEMIB has atleast three regions for binding distinct motifs: C-termini
endingin proline or arginine, single bulky hydrophobic residues, and
cysteine- or histidine-rich sequences. In some cases, substrates need
to engage two of these sites simultaneously for efficient recruitment
to FEMIB. Furthermore, in anaccompanying manuscript weidentify a
class of internal hydrophobic degrons which bind FEM1B by engaging
thearomatic-binding pocket but not the Arg/Pro-1pocket®. FEMI1B is
composed of multiple ankyrin and tetratricopeptide repeat domains,
anarchitecture that may provide both the surface areaand evolution-
ary flexibility toaccommodate distinct degron-binding modes. Since
many Cullin adaptors are composed of similar repeated domains,

we speculate that the ability to recognize multiple different degrons
is probably a shared property.

While multiplex screening can map E3-substrate interactions at
higher throughput compared with proteomics, our approach does have
some weaknesses. In our system, each substrate is overexpressed as an
EGFP fusion that may not be behave in the same way as the endogenous
protein. False negatives can also arise if there are multiple redundant
E3s that target the same substrate, or if the CRISPR guides targeting
therelevant E3 do not efficiently generate loss-of-function mutations.
Itis also possible that some of the E3 ligase-substrate relationships
that weidentified may not representdirectinteractions, although our
hits were enriched for physical interactions annotated in the BioGRID
database® (Extended DataFig. 9 and Supplementary Table 38). Still, we
believe that our multiplex approachis avaluable screening technique
thatcanbe used in conjunction with proteomics and biochemistry for
elucidating degradative pathways.

Finally, many of the E3-substrate relationships that we describe
may play important roles in human health. Mutations in the Cul3
adaptor GAN give rise to giant axonal neuropathy? and heterozygous
mutations in KLHL15 are associated with an intellectual development
disorder®**. Dominant mutations in FBXO38 cause spinal muscular
atrophy® and homozygous missense mutations cause distal hereditary
motor neuronopathy®. We speculate that FBXO38 may playaroleinthe
quality control of unfolded proteins, as the degron that it recognizesis
predominantly hydrophobic. Finally, FEM1B mutations are associated
with developmental delay and intellectual disability®. Thus, our map-
ping of degrons for KLHL15, FBXO38 and FEM1B may help guide the
identification of substrates that aberrantly accumulate in the nervous
system and give rise to disease.
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Methods

Cell culture

HEK-293T (ATCC CRL-3216) cells were grown in Dulbecco’s modified
Eagle medium (Life Technologies), which was supplemented with 10%
foetal bovine serum (HyClone) and penicillin-streptomycin (Thermo
Fisher Scientific).

Antibodies and chemicals

Primary antibodies used were mouse M2 anti-FLAG (Sigma F3165;
used at a dilution of 1:1,000), rabbit anti-B-actin (Cell Signaling 13E5;
1:10,000), mouse anti-GFP (Santa Cruz Biotech sc-9996; 1:1,000),
rabbit anti-GAPDH (Cell Signaling D16H11; 1:10,000) and rabbit
anti-Vinculin (Abcam ab129002; 1:10,000). Horseradish peroxidase
(HRP)-conjugated goat anti-mouse/-rabbit secondary antibodies were
obtained from Jackson ImmunoResearch (1:20,000) or Thermo Fisher
Scientific (1:20,000). MLN4924 (used at 1 pM) was obtained from Active
Biochem and cycloheximide from Calbiochem (100 pg ml™).

Lentivirus production

Lentivirus was packaged through the transfection of HEK-293T cells using
PolyJet In Vitro DNA Transfection Reagent (SignaGen Laboratories).
HEK-293T was seeded such that they reached ~-80% confluency at the time
of transfection. The transfection procedure recommended by the manu-
facturer was followed, with half of the DNA being the lentiviral transfer
vector and the other half of the DNA comprising a mix of four plasmids
encoding Gag-Pol, Rev, Tatand VSV-G. The mediumwas replaced with fresh
Dulbecco’s modified Eagle medium 24 h post-transfection. Lentiviral super-
natants were then collected at 48 h post-transfection, centrifuged (800g,
5min) to pellet cell debris, and stored in single-use aliquots at —80 °C.

Immunoblot

Cellswere washed oncein phosphate-buffered saline (PBS) and thenlysed
in1%sodium dodecylsulfate supplemented with1:200 benzonase (Merck)
for 20 minatroom temperature. Lysates were heated to 70 °C for 10 min
before separation by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (MPAGE, Merck). Proteins were transferred to polyvinylidene
difluoride (Immobilon-P, Merck) membrane (Trans-Blot SD Semi-Dry
Transfer System, Bio-Rad). After blocking for 30 min in 5% skimmed
milk (Sigma) dissolved in PBS, primary antibodies were applied over-
night. Following three 5 min washes in PBS plus 0.2% Tween-20 (Sigma),
HRP-conjugated secondary antibodies were applied for 40 min at room
temperature. Reactive bands were visualized using Pierce ECL or Pico West-
ernBlotting Substrate (ThermoFisher Scientific) and aChemiDocImaging
System (Bio-Rad).

Cycloheximide chase assays

Confluent 12-well plates of HEK-293Ts were treated with 100 pg ml™
cycloheximide (Calbiochem). At theindicated time, cells were washed
once with PBS and then directly lysed with NuPAGE LDS Sample Buffer
(Thermo Fisher Scientific) supplemented with 50 mM dithiothreitol.
Samples were sonicated for 20 stotal using a probe sonicator (Thermo
Fisher Scientific) and heated to 50 °C for 10 min before separation on
4-12%Bis-Tris gels (Thermo Fisher Scientific). Proteins were transferred
to nitrocellulose using a Trans-Blot Cell (Bio-Rad). Membranes were
blocked in 5% (w/v) skimmed milk (Thermo Fisher Scientific) dissolved
in TBS-T (Tris-buffered saline with 0.1% Tween-20, Cell Signaling) and
primary antibodies were applied overnight. Following three 5 min
washes in TBS-T, HRP-conjugated secondary antibodies were applied
for 1h at room temperature. Reactive bands were visualized using
Immobilon Western Chemiluminescent HRP Substrate (Millipore) and
autoradiography film (Denville Scientific).

Plasmids
An entry vector encoding FEM1B was obtained from the Ultimate
ORFeome collection (Thermo Fisher Scientific) and transferred into

alentiviral destination vector encoding two N-terminal FLAG tags
driven by the human cytomegalovirus (CMV) promoter through a
Gateway LRreaction (Thermo Fisher Scientific). Point mutations were
generated through the Gibson assembly (HiFi DNA Assembly Cloning
Kit, NEB) of two overlapping fragments generated by PCR (Q5, NEB).
Plasmids encoding C-terminally truncated DN Cullin constructs were a
generous gift from Prof. Wade Harper; these were amplified by PCR and
shuttled into apHAGE lentiviral vector such that they also co-expressed
blue fluorescent protein (BFP) downstream of a 2A peptide. Individual
CRISPR/Cas9-mediated gene disruption experiments were performed
using the lentiCRISPR v2 vector (Addgene #52961, deposited by Feng
Zhang). Thetop and bottom strands of the sgRNAs were synthesized as
oligonucleotides (IDT), phosphorylated using T4 PNK (NEB), annealed
by heatingto 95 °C followed by slow cooling to room temperature, and
ligated (T4 ligase, NEB) into the lentiCRISPR v2 vector cut with BsmBI.
Nucleotide sequences of the sgRNAs used were:

sg-AAVS1: GGGGCCACTAGGGACAGGAT

sgl-FEM1B: GTGACATAGCCAAGCAGATAG

sg2-FEM1B: GATGTACCTACCCGTCGAAG

sg-APPBP2: GATGTAGTTGTCCACGACAG

sg-GAN: GGTGCAGAAGAACATCCTGG

sg-FBX038: GTTGTAGATCTCTGTGCAGGG

sg-KLHL15: GTCTGAAGTAATCACTCTGGG

Flow cytometry

Flowcytometryanalysiswas performedonaBDLSRIlinstrument (Becton
Dickinson). Cell sorting was performed on a MoFlo Astrios (Beckman
Coulter). All data analysis was performed using FlowJo software.

Multiplex CRISPR screen with C-terminal peptides

Dual substrate/sgRNA libraries for multiplex CRISPR screens were
constructed by first generating a library of substrates fused to GFP
inthe context of the GPS lentiviral vector, followed by the addition of
a downstream U6-sgRNA cassette encoding a library of CRISPR sgR-
NAs. To generate a substrate library enriched for C-terminal degrons,
genomic DNA was extracted from cells harbouring lentiviral GPS vec-
tors encoding GFP-peptide fusions stabilized by expression of DN
Cul2 or DN Cul4 (Extended Data Fig.1d). The peptides were amplified
by PCR (Q5 Hot Start High-Fidelity DNA Polymerase, NEB) and cloned
downstream of GFP into the lentiviral GPS vector cut with BstBl and
Xhol using Gibson assembly (NEBuilder HiFi DNA Assembly Cloning
Kit, NEB). Assembled products were purified and concentrated using
SPRI beads (AMPure XP Reagent, Beckman Coulter), electroporated
into DH10p cells (Thermo Fisher Scientific), and then grown overnight
at 30 °C on Luria-Bertani (LB)-agar plates containing 100 pg ml™ car-
benicillin. The next morning all the resulting colonies were scraped
fromthe plates and the plasmid DNA extracted (GenElute HP Plasmid
DNA Midiprep Kit, Merck). Successful library construction wasinitially
verified by Sanger sequencing (Azenta).

A custom sgRNA library targeting either Cul2/5 adaptors or Cul4
adaptors (six sgRNAs per gene) was synthesized as an oligonucleotide
pool (Twist Bioscience), amplified by PCR (Q5 Hot Start High-Fidelity
DNA Polymerase, NEB), purified (Qiagen PCR purification kit) and
digested with Bbsl (NEB). Following concentration by ethanol precipita-
tion, the sample was separated on a10% TBE polyacrylamide gel electro-
phoresis gel (Thermo Fisher Scientific) stained with SYBR Gold (Thermo
Fisher Scientific) and the DNA was isolated from the 28 bp band using
the ‘crush-and-soak’ method. The DNA was concentrated by ethanol
precipitation and then cloned into lentiCRISPR v2 (Addgene #52961)
digested with BsmBI (NEB). The U6-sgRNA cassette was then amplified
by PCR, purified by agarose gel electrophoresis (QIAEX Il Gel Extrac-
tion Kit, Qiagen), and cloned into the GPS-peptide substrate library
plasmid pool linearized by digestion with I-Scel (NEB) using the Gibson
assembly method (NEBuilder HiFi DNA Assembly Cloning Kit, NEB). At
least100-fold representation of the library was maintained at each step.
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Multiplex CRISPR screening procedure. The dual GPS/sgRNA mul-
tiplex CRISPR screening plasmid library was packaged into lentiviral
particles, whichwere used to transduce HEK-293T cells stably express-
ing Cas9 atamultiplicity of infection of 0.2 (achieving approximately
20% DsRed" cells) and at sufficient scale to achieve at least ~-100-fold
coverage of the library (number of GPS substrates x number of CRISPR
sgRNAs x 100). Two days post-transduction, puromycin (1.5 pg ml™)
was added to eliminate untransduced cells. Surviving cells were pooled,
expanded, and then at day 8 post-transduction partitioned by FACS
into six equal bins based on the GFP/DsRed ratio.

Genomic DNA was extracted from both the selected cells and the
unsorted library (Gentra Puregene Cell Kit, Qiagen), and the fusion pep-
tides and associated sgRNAs were amplified by PCR (Herculase Il Fusion
Polymerase, Agilent) using a set of forward primers annealing between
GFPand the fusionsubstrate and aset of reverse primers annealing to
the tracrRNA downstream of the sgRNA. In each case a pool of eight
primers were used, which differed from each other by one nucleotide
inorderto ‘stagger’ theresulting sequence reads to provide sufficient
sequencediversity. Intotal, sufficient PCR reactions (4 pg genomic DNA
in100 pl) were performed to amplify a total amount of genomic DNA
equivalent to the amount of genomic DNA from cells representing at
least 100-fold coverage of library. All of the PCR reactions were pooled;
approximately one-tenth was removed, purified using a spin column
(Qiagen PCR purification kit), and 250 ng was used as a template for a
second PCRreaction to add lllumina P5 and P7 adaptors and indexes.
Indexed samples were then pooled to allow multiplexing, purified by
agarose gel electrophoresis (QIAEX Il Gel Extraction Kit, Qiagen) and
sequenced using paired-end reads on either an lllumina NextSeq 550
or NovaSeq 600 instrument.

Multiplex CRISPR screen data analysis. Screens performed using the
‘1-bin’ format were analysed using the MAGeCK algorithm'. Constant
sequences were removed from the raw Illumina reads using Cutadapt®
yielding a set of forward reads encoding the substrate and a set of
reverse reads encoding the sgRNA. These wereindependently mapped
to custom indexes using Bowtie 2 (ref. 39) and the resulting sam files
combined such that each read was assigned to both a GPS substrate
and associated sgRNA. For eachindividual GPS substrate, count tables
were then generated enumerating how many times each sgRNA was
identified in the unselected starting library compared with the sorted
cells; these were subsequently analysed by MAGeCK to identify the
genes targeted by sgRNAs enriched in the sorted cells. The MAGeCK
output was visualized as a scatter plot using the Seaborn library, with
allgenestargeted arranged alphabetically on the xaxis and the negative
log,, of the MAGeCK ‘pos|score’ on the y axis. A step-by-step protocol
is available at Protocol Exchange®.

GPS-ORFeome screen

Thegeneration of aGPSlentiviral vector expressing abarcoded human
ORFeome was described previously™. The library was packaged into
lentiviral particles and introduced into HEK-293T cells at a multiplicity
of infection of ~0.2 (achieving approximately 20% DsRed" cells) and
at sufficient scale to achieve at least ~100-fold coverage of the library
(-10 million transduced cells). Following puromycin selection
(1.5 pg mI™) to eliminate untransduced cells commencing 2 days
post-transduction, cells were partitioned into six bins of equal size
based on the stability of the GFP fusion (GFP/DsRed ratio). Control
cells (dimethyl sulfoxide (DMSO)-treated) were sorted first, followed
by cells treated with the pan-CRL inhibitor MLN4924 (1 uM for 8 h)
using the identical gates and settings. Genomic DNA was then extracted
(GentraPuregene Cell Kit, Qiagen) from each of the sorted populations
andllluminasequencinglibraries generated as described above, using
primers binding in constant regions flanking the barcode cassette
for the first PCR reaction, followed by a second PCR reaction to add
lllumina indexes and P5 and P7 adaptors. Single-end sequencing was

performed onaNextSeq 550 instrument (Illumina). Data analysis was
performed as described previously?, yielding a protein stability index
(PSI) stability metric between 1 (maximally unstable) and 6 (maximally
stable) for each barcoded ORF. Candidate CRL substrates were identi-
fied by subtracting the PSIscore in the DMSO treatment from the PSI
scorein the MLN4924 treatment, yielding a APSl; w0, in €ach case.

Generation of abarcoded sublibrary of MLN4924-responsive
ORFs

Gateway entry vectors encoding each of the 540 ORFs were grown up
individually from glycerol stocks in deep-well 96-well plates at 37 °C
with vigorous shaking. The bacteria from each 96-well plate were then
pooled evenly and the plasmid DNA extracted by miniprep (Qiagen).
A Gateway LR reaction (Gateway LR Clonase Il Enzyme mix, Thermo
Fisher Scientific) was then performed (as per the manufacturer’s rec-
ommendations) to shuttle the ORFs into a GPS destination vector
containing a random (22 N) ‘barcode’ sequence, such that, following
column purification (Qiagen PCR purificationkit) and transformation
into DH10p cells (Thermo Fisher Scientific), the resulting recombinants
expressed the ORFs as C-terminal fusions to GFP followed by a unique
3’ barcode. Sufficient colonies were scraped from the LB-agar plates
to give an average of between four and five unique barcodes per ORF
and the plasmid DNA extracted by midiprep (GenElute HP Plasmid DNA
Midiprep Kit, Merck).

Barcodes were assigned to their corresponding upstream ORFs
by paired-end Illumina sequencing. Plasmid DNA was first sheared
(NEBNext dsDNA Fragmentase, NEB) to yield fragments with a mean
size of ~500 bp, followed by end-repair and adaptor ligation according
tothe manufacturer’s protocol (NEBNext Ultrall DNA Library Prep Kit
for lllumina, NEB). An initial PCR reaction was then performed using
one primer annealingimmediately downstream of the barcode and one
primer binding the adaptor, thus enriching for fragments containing
the barcode sequence on one end and a portion of the 3’ end of the
upstream ORF on the other. Following asecond PCRreaction tointro-
ducellluminaP5and P7 sequences, the products were sequenced onan
llluminaMiSeq instrument using 150 bp paired-end reads: the forward
reads were trimmed of constant sequence to reveal the sequence of the
22 ntbarcode, while the reverse reads were mapped to a custom Bowtie
2index composed of the 540 target ORFs to assign the associated ORF.

GPS-ORFeome sublibrary screen with DN Cullins

The leading 540 ORFs exhibiting the greatest degree of stabilization
upon MLN4924 treatment with further characterized using DN Cul-
lin constructs. The barcoded GPS-ORF sublibrary was expressed in
HEK-293T cells as described above. Six days post-transduction, the cells
were divided across seven plates and transduced with lentiviral vectors
encoding either DN Cull, DN Cul2, DN Cul3, DN Cul4A, DN Cul4B, DN
Cul5 or an empty vector as a control; these vectors also contained a
downstream 2A-BFP cassette toidentify transduced cells. The BFP* cells
ineachindividual pool were then partitioned into six stability bins by
FACS and analysed as described above, yielding a PSI metric for each
barcoded ORF across each of the conditions.

Multiplex CRISPR screen with Cul3 substrate ORFs
A total of 116 ORFs identified as substrates of Cul3 complexes were
selected for analysis by multiplex CRISPR screening. A barcoded GPS
library of these 116 ORFs was created as described above. A pool of
sgRNAs targeting 187 BTB adaptors at a depth of 6 sgRNAs/gene were
synthesized on an oligonucleotide microarray (Agilent) and cloned
into the lentiCRISPR v2 vector as described above. The U6-sgRNA
cassette was then amplified by PCR, and cloned into the I-Scel site by
Gibson assembly to generate the multiplex CRISPR screening library.
The screen performed in the ‘1-bin’ format was carried out
exactly as described above: the library was packaged into lentiviral
particles, introduced into Cas9-expressing HEK-293T cells at low
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multiplicity of infection, untransduced cells were removed through
puromycinselection, and then the top 5% of cells based on the GFP/
DsRed ratio were isolated by FACS. The screen performed in the
‘6-bin’ format was initially carried out in the same way, except that,
after puromycin selection, ‘stable filler’ cells were spiked-in at the
appropriate ratio (-30%) to generate a broad, even stability distri-
bution. These ‘stable filler’ cells had previously been transduced
with an orthogonal dual GPS-sgRNA expression library, and had
been isolated by FACS on the basis of bright GFP fluorescence. The
resulting population was then partitioned into six equal bins on the
basis of the GFP/DsRed ratio by FACS, and deconvoluted by lllumina
sequencing as described above.

Thescreen performedinthe ‘1-bin’ format was analysed as described
above. Screens performed using the ‘6-bin’ format were treated similarly
initially, yielding for each of the six sorting bins acount table enumerat-
ing the frequency with which each substrate-sgRNA combination was
observed. After normalization for sequencing depth, a PSImetric was cal-
culated for each substrate-sgRNA combination, given by multiplying the
proportionofreadsineachbinby the binnumber (1-6), thus generating
ascoreranging between1(maximally unstable) to 6 (maximally stable).
Toidentify E3ligases targeted by multiple sgRNAs that resulted in stabi-
lization of the substrate, a set of Mann-Whitney Utests were performed;
for each set of sgRNAs targeting the same E3 ligase, the mean PSl score
ofthe substrate when paired with those sgRNAs was compared with the
mean PSIscore for the substrate when paired with all other sgRNAs. The
results were again visualized as a scatter plot, with all genes targeted
arranged alphabetically onthexaxisand the negativelog,;,of theresulting
Pvalue ontheyaxis.

Oneweakness of the 1-bin approachis that substrates lying at the
bottom of the stability group will be placed at a disadvantage: upon
knockout of the cognate E3, any degree of stabilization of substrates at
thetop of the stability group should be sufficient to shift the cellsinto
the sorting gate, whereas for substrates at the bottom of the stability
group alarger degree of stabilization will be required. Indeed, for our
multiplex CRISPR screen with CRL degron peptides (Fig. 8), >75% of
the substrates for which we obtained significant hits were predicted
to lie in the top half of their stability group. Thus we would consider
the 6-bin format optimal for future experiments, with that caveat that
they are more complex to establish due to the requirement to balance
the overall stability distribution of the substrates. However, the 1-bin
format does allow for the possibility of asecond sort to further purify
the population of cells expressing stabilized GFP-fusion substrates
before sequencing, and indeed we found that the data from the second
sort were generally superior to the first (Fig. 8).

GPS-peptide screen

Nucleotide sequences encoding a series of 24-mer peptidetiles starting
at 6-mer intervals across the 540 ORFs (a total of 33,566 sequences)
were synthesized on an oligonucleotide microarray (Agilent), amplified
by PCR, and cloned into a lentiviral GPS vector downstream of GFP by
Gibsonassembly. To avoid the generation of C-terminal degronsacom-
mon C-terminal sequence (encoding the 10-mer RIARAKASTN*) was
appendedtoall peptides, except for those peptides that were derived
from the native C-terminus of the proteins that retained their stop
codon at the native position. The GPS-peptide library was expressed
in HEK-293T cells and the stability of the GFP-peptide fusions in the
presence and absence of MLN4924 measured by FACS and Illumina
sequencing as described above.

For the leading 791 peptides that exhibited both significant and
reproducible responses to MLN4924 treatment, we performed satu-
ration mutagenesis GPS screens to characterize the degron motif.
Oligonucleotide libraries were synthesized (Agilent) encoding both
the wild-type peptide plus a panel of single mutant variants in which
eachresidue was mutated to all other possible residues. Following PCR
amplification and cloning into the GPS vector downstream of GFP, the

resulting GPS-peptide saturation mutagenesis library was expressedin
HEK-293T cells and the stability of the GFP-peptide fusions measured
by FACS and Illumina sequencing as described above. The results are
depicted as heat maps, in which the colour of each cellillustrates the
stability difference (APSI) between that individual mutant peptide and
the median PSl of all the unmutated peptides; the darker the red colour,
the greater the stabilizing effect of the mutation.

Multiplex CRISPR screen with Cullin-substrate peptides
Sixty-three peptide substrates with well-resolved degron motifs were
selected for analysis by multiplex CRISPR screening. The peptides
substrates were divided into three pools of equal size based on their
stability, synthesized as oligonucleotides (Agilent) and cloned into
the GPS vector downstream of GFP. An sgRNA library targeting known
Cullin adaptors (259 genes at a depth of 4 sgRNAs per gene) was
synthesized (Agilent) and cloned into lentiCRISPR v2 as described
above; the U6-sgRNA cassette was then amplified by PCR and cloned
into the GPS vector using the I-Scel site to generate the multiplex
CRISPR screeninglibrary. Screens were performed in the 1-bin format
as described above.

AlphaFold and phylogenetic analysis of FEM1B

We predicted ten structures of FEM1B bound to different substrates
using the AlphaFold plugin in ChimeraX (v1.4). The full peptide
sequence and the full FEM1B sequence were used asinputs. Structural
analysis and structural alignments were also performed in ChimeraX,
with the Arg/Pro -1 pocket and aromatic-binding pocket residues
defined onthebasis of their predicted contact (van der Waals overlap
>-0.70 A) with the substrate proline or aromatic residues, respec-
tively. Twelve FEM1B orthologues from diverse animal species were
collected: Homo sapiens (Q9UK73), Bos taurus (FIN162), Anolis caro-
linensis (XP_003227293.1), Mus musculus (Q9Z2G0), Gallus gallus
(Q5ZM55), Drosophila melanogaster (A1ZBY1), Nematostella vectensis
(XP_001622320.2), Danio rerio (E7F7Y4), Xenopus laevis (Q6GPES),
Anopheles gambiae (AOA1S4GUZ4), Apis mellifera (XP_026298620.1)
and Ciona intestinalis (XP_002128243.1). Sequences were aligned in
Clustal Omega and visualized using ESPrint 3.

Saturation mutagenesis of FEM1B peptide substrates

An oligonucleotide library was synthesized (Agilent) encoding both
the wild-type peptide plus a panel of single mutant variants in which
each residue was mutated to all other possible residues. In addition,
an extra set of peptides were also encoded in which single additions
of all 20 amino acids (labelled ‘Add’) were appended to the extreme
C-terminus. GPS-peptide libraries were generated GPS screens per-
formed to measure the stability of each mutant as described above.
The results are depicted as heat maps, in which the colour of each
cell illustrates the stability difference (APSI) between that individual
mutant peptide and the median PSl of all the unmutated peptides; the
darker thered colour, the greater the stabilizing effect of the mutation.

Comparison of multiplex screen datato BioGRID

A custom R script using the packages dplyr, ggplot2 and stringr was
used to compare screen data hits to physical interactions on the
BioGRID database. We used the Homo sapiens BIOGRID-4.4.220 release
for our analysis. Briefly, we calculated for ascreen containingrandom
hits how many of these hits were also found on the BioGRID database.
This process was then repeated for 10,000 random screens and com-
pared to how many hits we found in common for our experimental
multiplex data.

Statistics and reproducibility

Unless specified in the legends, all screens were performed only
once. Follow-up immunoblot and flow cytometry experiments
were performed two independent times with similar results. No
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statistical methods were used to pre-determine sample size. No data
were excluded from the analyses unless specified. Experiments were
not randomized. Theinvestigators were not blinded to allocation dur-
ing experiments and outcome assessment.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Sequencing data that support the findings of this study have been
deposited in the Sequence Read Archive (SRA) under accession code
PRJNA1001958. Both raw and processed data for all screens are pro-
videdinthe supplementary tables. All other data supporting the find-
ings of this study are available from the corresponding author on
reasonable request. Source data are provided with this paper.

Code availability

Sample Python code to analyse multiplex CRISPR screening sequencing
datais available at https://github.com/rttimms/multiplex_CRISPR_
screens. The Rcode to compare the multiplex screening hits to BioGRID
datais available at https://github.com/elijahmena/biogridanalysis.
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Extended Data Fig.1| Generation of multiplex CRISPR screen libraries to
interrogate C-terminal degrons targeted by Cullin-RING E3 ligases. a-d
Derivation of cells expressing C-terminal peptides targeted by Cul2 complex or
Cul4 complexes. Starting from HEK-293T cells expressing the C-terminome GPS-
peptide library'?, we isolated the most unstable GFP-peptide fusions (Binl) (a),
treated them with MLN4924, and thenisolated cells in which the GFP-peptides
fusions were stabilized (b). After recovery in the absence of MLN4924, to further
purify substrates of specific Cullin complexes we expressed dominant-negative
(DN) versions of either Cul2 (green) or Cul4A (pink) and again isolated the cells in
which the GFP-peptides fusions were stabilized by FACS (c). After recovery, we re-
challenged the sorted cells with the DN Cullins to verify that the final populations
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(61 genes x 6 sgRNAs)

+ Cul4 substrates
GPS/sgRNA library
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multiplex CRISPR screening vector to examine C-terminal degrons targeted by
Cullins. e, Schematic representation of the multiplex CRISPR screening vector.
GFP-fusion peptides were amplified from the genomic DNA of the cells in (d) by
PCRand cloned into the lentiviral vector downstream of GFP; the CRISPR sgRNA
library targeting either Cul2 or Cul4 adaptors was then cloned into the resulting
substrate library using the I-Scel site to generate the dual GPS-sgRNA multiplex
CRISPR screeninglibrary. f, The library was then introduced into HEK-293T stably
expressing Cas9, and the top -5% of cells expressing the most stable substrates
were isolated by FACS. Genomic DNA was then extracted from both the sorted
cells and the unsorted libraries, and substrate-sgRNA pairs enriched in the sorted
cells quantified by paired-end Illumina sequencing.
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Extended Data Fig. 2| Novel aspects of C-degron pathways revealed by
the multiplex CRISPR screen. a-d, DCAF12 recognizes a wider variety of
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ofthe peptides revealed that they all terminate with a C-terminal proline residue
(highlighted inred). f, Cycloheximide chase assays to monitor the degradation of
the indicated GPS substrates in control (sgAAVS1) or FEM1B knockout (sgFEM1B)
cells byimmunoblot. Immunoblot experiments were performed twice with similar
results. All source numerical data are available in Supplementary Tables 1-6;

unprocessed blots are available in source data.
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Extended Data Fig. 3| Analysis of FEM1B degrons. a, Additional AlphaFold
structural predictions for the interactions between FEM1B and Pro-ended
peptide substrates. b, The Arg/Pro -1 pocket of FEM1B is shown bound to four
different Pro-ended degrons predicted to make similar interactions with FEM1B.

¢, Many of the Pro-end (orange) or Arg-end (blue) substrates use aleucine at

the -3 position to interact with asurface on FEMI1B (purple). d-f, Saturation
mutagenesis results for additional Pro-ended substrates. Source numerical data
areavailablein Supplementary Table 7.
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Extended Data Fig. 4 | Genetic complementation of FEM1B knockout cells.
a-b, Assessing the role of the predicted FEM1B binding pockets in the recognition
ofthree peptide substrates terminating with proline. Three example GFP-tagged
peptide substrates were selected: the C-termini of PSMBS5 and SNF8, predicted by
both AlphaFold and the saturation mutagenesis data to make essential contacts
withboth the Arg/Pro -1pocket and the aromatic-binding pocket (Extended
DataFig.3a,d,e), and the C-terminus of BEX2, which AlphaFold suggested also
binds both pockets but for which the saturation mutagenesis suggested only

the contacts with the Arg/Pro -1 pocket were essential for efficient degradation
(Extended Data Fig. 3a,f). FEM1B knockout cells were first transduced with
lentiviral vectors encoding FLAG-tagged wild-type FEM1B or FEM1B variants
harboring the indicated mutations. Subsequently the cells were transduced with

[ Untransduced  [] + FLAG-FEM1B

GPS vectors encoding the indicated peptide substrates of FEM1B terminating
with C-terminal proline and their stability measured by flow cytometry (a).
Relative expression levels of the exogenous FEMI1B constructs were assayed by
immunoblot (b). We attempted to validate that the -1 binding pocket mutants
were competent for the degradation of GFP fused to a peptide degron from
FNIP1(ref. 30), but we found that the FNIP1,,,., peptide was only minimally
stabilized in FEM1B knockout cells when expressed in the context of the GPS
system (c). However, overexpression of FEM1B harboring the R126A mutation did
resultin substantial destabilization of the FNIP1 construct in wild-type cells (d).
Immunoblot and flow cytometry experiments were performed twice with similar
results. Unprocessed blots are available in source data.
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Extended Data Fig. 7 | Linear degrons targeted by Cullin-RING E3 ligases. a-d, Example degron motifs delineated through site-saturation mutagenesis:
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divided into three groups based on their expected stability; in each case, the
top ~5% of cells based on the stability of the GFP-peptide fusion were isolated by
FACS. b-d, Assigning Cullin-RING substrate adaptors to cognate degron motifs:
aC-terminal degron harboring an E-2 motif correctly assigned to DCAF12 (b),
a‘broad hydrophobic’ degron assigned to FBXO38 (c), and a complex degron
assigned to KLHL15 (d). e,f, Individual validation of the multiplex CRISPR

C Stabilization
DLC1 (220) (APSI)
i ‘ Sort 1
c 8
D |
t FOmT 25 go
g oFBX038
EE g4
G . 2 ©FBXO11
G W D) gy e B e
", Cd ° oo
o K | | 9
E‘; ML | | i All targeted CRL components.
s ! Sort 2
= vl s
o 1]
Q | -1.0 m
R ‘ H
s 4777;J77l7; 54 ©FBX038
T | L 8
| o5 §
v 1] | [ e
w — 1 T = | - ] 4 -
b | | [TH ] 0
NDDSADYQHFLQDCVDGLFKEVKE
Original Residue
d Stabilization
(APSI) Sort1
A 8
c
5 80
§
£ g
F g
& 1lls
G - T [
H 3
e ! °
- K All targeted CRL components
S L 18
s L] Sort2
Y]
S N s
P
A 12 g6
5
o T & SKLHLIS
s | gt
g
T | LU £ S
v i Seiaes e
w | o
Y | All targeted CRL components.
Original Residue
f sgAAVS1 sgKLHL15

CHX(hrs)> 0051 2 46 00512 4 6

. L T L1 T s

P
T~ - —— - i GPES S e @ [B: GAPDH

GPS-
ZNF511 (4)

screening results. e, The indicated peptide substrates expressed in the context
of the GPS system were introduced into either control (sgAAVS1, gray) or
knockout (yellow, green and blue) HEK-293T cells and their stability measured
by flow cytometry. f, A cycloheximide chase assay was also used to monitor the
degradation of the ZNF511 (4) peptide substrates in control (sgAAVSI1) or KLHL15
knockout (sgkLHL15) cells by immunoblot. Immunoblot and flow cytometry
experiments were performed twice with similar results. Source numerical data
areavailable in Supplementary Tables 20-38; unprocessed blots are available in
source data.
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Extended Data Fig. 9 | Comparison of multiplex CRISPR screen hits with

physicalinteractions in BioGRID. a, Across all multiplex screens there were

1013 unique E3-substrate hits, of which 31 were present in the BioGRID interaction
database. Datasets were simulated with 1013 hits chosen at random and we most
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frequently found that 7 of these hits were present in the BioGRID database. The
31 hits that we observe is therefore highly significant (p < 0.0001). b, The same
analysis was performed as in (a) except that all E3-substrate hits thatincluded a
Cullinwere excluded.
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1. Live cells

Extended Data Fig. 10 | Representative FACS gating strategy for all GPS experiments.
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data shown are typically representative of multiple independent experiments.
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Materials & experimental systems Methods
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IXI|[ ] Animals and other organisms
XI|[ ] Clinical data
IXI|[ ] Dual use research of concern
X[ ] Plants
Antibodies
Antibodies used The following antibodies were used for immunoblot:
mouse M2 anti-FLAG (Sigma F3165; used at a dilution of 1:1000)
rabbit anti-B-actin (Cell Signaling 13E5; 1:10,000)
mouse anti-GFP (Santa Cruz Biotech sc-9996; 1:1,000)
rabbit anti-GAPDH (Cell Signaling D16H11; 1:10,000)
rabbit anti-Vinculin (Abcam ab129002; 1:10,000)
Validation Validation data for all the above antibodies can be found at the following manufacturer websites:

https://www.sigmaaldrich.com/GB/en/product/sigma/f3165
https://www.cellsignal.com/products/primary-antibodies/b-actin-13e5-rabbit-mab/4970
https://www.scbt.com/p/gfp-antibody-b-2
https://www.cellsignal.com/products/primary-antibodies/gapdh-d16h11-xp-rabbit-mab/5174
https://www.abcam.com/products/primary-antibodies/vinculin-antibody-epr8185-ab129002.html

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK293T cells were obtained from ATCC.
Authentication Authenticated HEK293T cells were obtained from ATCC; we did not perform any additional authentication.
Mycoplasma contamination Cells were routinely tested for Mycoplasma contamination and found to be negative.

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)
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All plots are contour plots with outliers or pseudocolor plots.
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Methodology
Sample preparation HEK293T cells were trypsinized, washed once with PBS, and aliquoted into 5 ml FACS tubes.
Instrument BDLSRII
Software Data was collected using FACS DIVA and analyzed using FlowJo.
Cell population abundance Live HEK293T cells were gated based on forward and side scatter and typically represented >80% of all events.
Gating strategy For GPS experiments, gating for DsRed+ cells ensured that only transduced cells were analyzed.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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