Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors

Abstract

Current dogma asserts that the foetal liver (FL) is an expansion niche for recently specified haematopoietic stem cells (HSCs) during ontogeny. Indeed, between embryonic day of development (E)12.5 and E14.5, the number of transplantable HSCs in the murine FL expands from 50 to about 1,000. Here we used a non-invasive, multi-colour lineage tracing strategy to interrogate the embryonic expansion of murine haematopoietic progenitors destined to contribute to the adult HSC pool. Our data show that this pool of fated progenitors expands only two-fold during FL ontogeny. Although Histone2B-GFP retention in vivo experiments confirmed substantial proliferation of phenotypic FL-HSC between E12.5 and E14.5, paired-daughter cell assays revealed that many mid-gestation phenotypic FL-HSCs are biased to differentiate, rather than self-renew, relative to phenotypic neonatal and adult bone marrow HSCs. In total, these data support a model in which the FL-HSC pool fated to contribute to adult blood expands only modestly during ontogeny.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Life-long blood progenitor expansion in the FL is modest.
Fig. 2: Validation of the utility of the ROSA26rtTa/rtTApTRE-H2BGFP+/GFP model for tracking cell divisions.
Fig. 3: Phenotypic FL-HSCs undergo many cell divisions.
Fig. 4: E14.5 FL-HSC progenitors are biased to differentiate.
Fig. 5: E14.5 FL-HSC progenitors are biased to differentiate.
Fig. 6: E16.5 FL-HSCs are transcriptionally different from adult HSCs. Updated model of the role of the FL niche in HSC ontogeny.

Data availability

Source data for Supplementary Table 1, Figs. 1c,d, 2d, 3c,d, 4b, 4e, 4f(ii), 5b, 5c and 6a,b and Extended Data Figs. 2, 3, 4b,c and 5d,e are provided in Source Data Figs. 1–6, Source Data ED Figs. 2–5 and Source Data Supplementary Table 1. Previously published E16.5 FL-HSC and adult HSC data that were re-analysed here are available in the Gene Expression Omnibus under accession code GSE128761. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta–gonad–mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F. & Dzierzak, E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1, 291–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Yokomizo, T. et al. Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 6, 13–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Boisset, J. C. et al. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood 125, 465–469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ganuza, M. et al. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat. Cell Biol. 19, 1153–1163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batsivari, A. et al. Understanding hematopoietic stem cell development through functional correlation of their proliferative status with the intra-aortic cluster architecture. Stem Cell Rep. 8, 1549–1562 (2017).

    Article  CAS  Google Scholar 

  12. Rybtsov, S., Ivanovs, A., Zhao, S. & Medvinsky, A. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 143, 1284–1289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fleming, W. H. et al. Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J. Cell Biol. 122, 897–902 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Medvinsky, A., Rybtsov, S. & Taoudi, S. Embryonic origin of the adult hematopoietic system: advances and questions. Development 138, 1017–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. Development 133, 3733–3744 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lessard, J., Faubert, A. & Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23, 7199–7209 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10, 273–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Qian, H. et al. Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood 110, 2399–2407 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, S. & Liu, F. Fetal liver: an ideal niche for hematopoietic stem cell expansion. Sci. China Life Sci. 61, 885–892 (2018).

    Article  PubMed  Google Scholar 

  21. Hackney, J. A. et al. A molecular profile of a hematopoietic stem cell niche. Proc. Natl Acad. Sci. USA 99, 13061–13066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, C. C. et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12, 240–245 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, C. C., Kaba, M., Iizuka, S., Huynh, H. & Lodish, H. F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111, 3415–3423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowman, T. V. & Zon, L. I. Lessons from the niche for generation and expansion of hematopoietic stem cells. Drug Discov. Today Ther. Strateg. 6, 135–140 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moore, K. A., Pytowski, B., Witte, L., Hicklin, D. & Lemischka, I. R. Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc. Natl Acad. Sci. USA 94, 4011–4016 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou, S. & Lodish, H. F. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc. Natl Acad. Sci. USA 107, 7799–7804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahony, C. B. & Bertrand, J. Y. How HSCs colonize and expand in the fetal niche of the vertebrate embryo: an evolutionary perspective. Front. Cell Dev. Biol. 7, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ganuza, M., Hall, T., Obeng, E.A. & McKinney-Freeman, S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp. Hematol. 83, 35–47 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murayama, E. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Khan, J. A. et al. Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351, 176–180 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Deng, M. et al. A motif in LILRB2 critical for Angptl2 binding and activation. Blood 124, 924–935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charbord, P. & Moore, K. Gene expression in stem cell-supporting stromal cell lines. Ann. N. Y. Acad. Sci. 1044, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R. & Thorgeirsson, S. S. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest. 70, 511–516 (1994).

    CAS  PubMed  Google Scholar 

  34. Kubota, H., Yao, H. L. & Reid, L. M. Identification and characterization of vitamin A-storing cells in fetal liver: implications for functional importance of hepatic stellate cells in liver development and hematopoiesis. Stem Cells 25, 2339–2349 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Tan, K. S., Kulkeaw, K., Nakanishi, Y. & Sugiyama, D. Expression of cytokine and extracellular matrix mRNAs in fetal hepatic stellate cells. Genes Cells 22, 836–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Sugimura, R. et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545, 432–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lis, R. et al. Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 545, 439–445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilkinson, A. C. et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. & Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 117, 4460–4466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Werner, B. et al. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions. eLife 4, e08687 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Beaudin, A. E. et al. A transient developmental hematopoietic stem cell gives rise to innate-like B and T cells. Cell Stem Cell 19, 768–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, I., He, S., Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108, 737–744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrison, D. E., Zhong, R. K., Jordan, C. T., Lemischka, I. R. & Astle, C. M. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp. Hematol. 25, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  53. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 e1210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takano, H., Ema, H., Sudo, K. & Nakauchi, H. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: inference from differentiation in daughter cell and granddaughter cell pairs. J. Exp. Med. 199, 295–302 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamey, F. K. & Gottgens, B. Machine learning predicts putative hematopoietic stem cells within large single-cell transcriptomics data sets. Exp. Hematol. 78, 11–20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haltalli, M. L. R. et al. Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection. Nat. Cell Biol. 22, 1399–1410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Medvinsky, A. L. & Dzierzak, E. A. Development of the definitive hematopoietic hierarchy in the mouse. Dev. Comp. Immunol. 22, 289–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wagner, J. E. Jr. et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18, 144–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fares, I. et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sadler, T.W. Langman’s Medical Embryology (Wolters Kluwer, 2006).

  68. Li, Y. et al. Single-cell analysis of neonatal HSC ontogeny reveals gradual and uncoordinated transcriptional reprogramming that begins before birth. Cell Stem Cell 27, 732–747 e737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank W. Clements, the McKinney-Freeman laboratory and Department of Hematology at St. Jude Children’s Research Hospital (St. Jude) for critical discussions and reading of the manuscript; D. Ashmun, S. Schwemberger and J. Laxton for FACS support; C. Davis-Goodrum, K. Millican, A. Reap and C. Savage for help with transplants. This work was supported by the American Society of Hematology (S.M.-F.), the Hartwell Foundation (S.M.-F.), the NIDDK (K01DK080846 and R01DK104028, S.M.-F.), the American Lebanese Syrian Associated Charities (ALSAC) (S.M.-F.). M.G. is funded by the American Society of Hematology (Global Research Award), Barts Charity, Leukaemia UK (John Goldman Fellowship, 2020/JGF/001) and Medical Research Council (MRC Career Development Award, MR/V009222/1). E.O. is supported by an Edward P. Evans Foundation Discovery Research Grant, an American Society of Hematology Scholar Award and a Gabrielle’s Angel Foundation Medical Research Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

M.G. designed the study, treated mice, performed single-cell assays, cell division history experiments, BM and FL transplants, collected and analysed data, and wrote the paper. T.H. contributed to experimental design, performed BM and FL transplants, and collected and analysed data. A.C. contributed to experimental design, and collected and analysed Confetti mice. E.K. processed and stained haematopoietic colonies. C.C. contributed mouse colony management. R.S.-L. performed and analysed single-cell assays. C.N. carried out and analysed PVA cultures. J.M. and E.O. performed transcriptional analyses of FL-HSC and adult HSCs. J.D., D.F. and G.K. performed statistical analyses. S.M.-F. designed the study, analysed data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Miguel Ganuza or Shannon McKinney-Freeman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Charles Durand, Linheng Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic of Confetti-allele based approach to estimate clonal complexity, flow cytometry gating and summary of Confetti labelling in blood and bone marrow.

A. Confetti-allele approach to estimate cell numbers. Ai. Schematic of Confetti allele. Aii. Mouse-to-Mouse Variance in the distribution of Confetti colors (MtMV) inversely correlates with the number of initiating events. B. Representative Confetti gating. B-cells from a TAM-treated ROSA26+/ConfettiUbiq+/ERT2-Cre mouse and a ROSA26+/ConfettiUbiq+/+ negative control are shown. C. Flow cytometry gating strategy of PB. (Ci) B-cells (B), T-cells (T) and myeloid cells (M), as well as BM compartments (Cii).

Extended Data Fig. 2 Summary of Confetti labelling in blood and bone marrow.

A. Average total PB Confetti label of mice at (Ai) two (n ≥ 8: E8-10, n = 16; E12-14, n = 18; P1, n = 11; P8-9, n = 18; P14-15, n = 13; P21-22, n = 8) and (Aii) six months of age (n ≥ 4: E8-10, n = 5; E12-14, n = 9; P1, n = 11; P8-9, n = 18; P14-15, n = 13; P21-22, n = 4). B. Average total Confetti labeling in the BM at six months of age (n ≥ 4: E8-10, n = 5; E12-14, n = 9; P1, n = 11; P8-9, n = 18; P14-15, n = 13; P21-22, n = 4). A-B. Related to Fig. 1C-D and Extended Data Fig. 3. A-B. Means are shown. Error bars indicate standard deviation. Individual data points are shown in black.

Source data

Extended Data Fig. 3 Numbers of fetal liver hematopoietic progenitors contributing to specific adult blood compartments.

MtMV-based estimates of numbers of progenitors contributing to PB at P60 (n ≥ 8: E8-10, n = 16; E12-14, n = 18; P1, n = 11; P8-9, n = 18; P14-15, n = 13; P21-22, n = 8) (A) and P180 (n ≥ 4: E8-10, n = 5; E12-14, n = 9; P1, n = 11; P8-9, n = 18; P14-15, n = 13; P21-22, n = 4) (B) labeled at distinct windows of ontogeny are shown. Total white blood cells (WBC), B-cells (B), T-cells (T) and myeloid cells (M). Related to Fig. 1C. Error bars indicate the 95% confidence intervals.

Source data

Extended Data Fig. 4 Window of active labelling of DOX in vivo.

A. Experimental schematic. ROSA26 rtTa/+ Col1a1tetO-H2B-GFP/+ CD45.2+ donor BM68 was pooled from five donors and transplanted into CD45.1+/CD45.2+ recipient mice previously treated with DOX on day three (-3), two (-2) or one (-1) before transplantation or on the same of transplant (day 0) (n = 3 recipients per group). B. %GFP+ BM of recipients 4, 7, or 11 days post-transplant (Trx). C. To corroborate the ability of non-labelled transplanted CD45.2+ cells to respond to DOX, CD45.2+ c-Kit+ sorted cells from each mouse cohort were cultured in vitro in the presence or absence of DOX showing that cells were responsive to DOX in vitro.

Source data

Extended Data Fig. 5 Fetal liver factor ANGPTL3 is not able to promote self-renewing expansion of E14.5 FL-HSCs.

A. Gating strategy on E12.5-CD45+c-Kit+ cells and E14.5-c-Kit+ and E14.5-HSC cells. Related to Fig. 3B-C & 4. B-D. LSK CD150+CD48C57Bl/6 HSCs were isolated from E14.5 FL or adult BM and cultured in PVA cultures tailored for self-renewing expansion either with or without addition of ANGPTL3, for 2 weeks. Immunophenotypic HSC expansion was then quantified. Due to known immunophenotypic shifts during PVA culture, HSC were defined as LSK CD150+EPCR+ after culture. B. Experimental schematic. C. Gating strategy of LSK CD150+EPCR+ HSC after culture. D. Proportion of wells expanding, defined as containing at least 100 immunophenotypic LT-HSCs. E. For those wells showing cell expansion, HSC expansion as a ratio of output/input is shown. For each condition, 5 biological replicates and 2 independent experiments with 10 wells/replicate. Each circle/square represents an individual biological replicate. Means and standard deviations are depicted. For (D), the Holm-Sidak method (2-tailed) was used to calculate statistical significance and correct for multiple comparisons. Exact p-values are shown in Figure.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Supplementary Table 1. Estimates of initiating cell numbers contributing to adult haematopoiesis. Supplementary Table 2. Antibodies, key chemicals, cell lines, experimental models, oligonucleotides and software.

Supplementary Data 1

Source data values for Supplementary Table 1.

Source data

Source Data Fig. 1

All source data values.

Source Data Fig. 2

All source data values.

Source Data Fig. 3

All source data values.

Source Data Fig. 4

All source data values.

Source Data Fig. 5

All source data values.

Source Data Fig. 6

All source data values.

Source Data Extended Data Fig. 2

All source data values.

Source Data Extended Data Fig. 3

All source data values.

Source Data Extended Data Fig. 4

All source data values.

Source Data Extended Data Fig. 5

All source data values.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganuza, M., Hall, T., Myers, J. et al. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat Cell Biol 24, 1475–1486 (2022). https://doi.org/10.1038/s41556-022-00999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-00999-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing