Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

PROTEIN AGGREGATION

Membranes regulate biomolecular condensates

Biomolecular condensation has emerged as a fundamental mechanism for cellular organization, but less is known about the regulation of condensate subcellular location and size. A new study reports that membrane tethering of protein and RNA directly influences the assembly, size and material properties of ribonucleic condensates.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane localization controls the nucleation and size of condensates.

References

  1. Snead, W. T. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-00882-3 (2022).

    Article  PubMed  Google Scholar 

  2. Zhang, H. et al. Mol. Cell 60, 220–230 (2015).

    Article  CAS  Google Scholar 

  3. Wurtz, J. D. & Lee, C. F. Phys. Rev. Lett. 120, 078102 (2018).

    Article  CAS  Google Scholar 

  4. Lyon, A. S., Peeples, W. B. & Rosen, M. K. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  Google Scholar 

  5. Mayer, B. J. & Yu, J. J. Mol. Biol. 430, 4547–4556 (2018).

    Article  CAS  Google Scholar 

  6. Resh, M. D. Curr. Biol. 23, R431–R435 (2013).

    Article  CAS  Google Scholar 

  7. Sych, T., Levental, K. R. & Sezgin, E. Annu. Rev. Biophys. https://doi.org/10.1146/annurev-biophys-090721-072718 (2022).

    Article  PubMed  Google Scholar 

  8. Antonny, B. Annu. Rev. Biochem. 80, 101–123 (2011).

    Article  CAS  Google Scholar 

  9. Vrljic, M., Nishimura, S. Y., Moerner, W. E. & McConnell, H. M. Biophys. J. 88, 334–347 (2005).

    Article  CAS  Google Scholar 

  10. Case, L. B., Ditlev, J. A. & Rosen, M. K. Annu. Rev. Biophys. 48, 465–494 (2019).

    Article  CAS  Google Scholar 

  11. Lee, J. E., Cathey, P. I., Wu, H., Parker, R. & Voeltz, G. K. Science 367, eaay7108 (2020).

    Article  CAS  Google Scholar 

  12. Ma, W. & Mayr, C. Cell 175, 1492–1506.e19 (2018).

    Article  CAS  Google Scholar 

  13. Fujioka, Y. et al. Nature 578, 301–305 (2020).

    Article  CAS  Google Scholar 

  14. Liao, Y.-C. et al. Cell 179, 147–164.e20 (2019).

    Article  CAS  Google Scholar 

  15. Baumann, S., Pohlmann, T., Jungbluth, M., Brachmann, A. & Feldbrügge, M. J. Cell Sci. 125, 2740–2752 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay B. Case.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Case, L.B. Membranes regulate biomolecular condensates. Nat Cell Biol 24, 404–405 (2022). https://doi.org/10.1038/s41556-022-00892-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-00892-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing