Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The PPR domain of mitochondrial RNA polymerase is an exoribonuclease required for mtDNA replication in Drosophila melanogaster

Abstract

Mitochondrial DNA (mtDNA) replication and transcription are of paramount importance to cellular energy metabolism. Mitochondrial RNA polymerase is thought to be the primase for mtDNA replication. However, it is unclear how this enzyme, which normally transcribes long polycistronic RNAs, can produce short RNA oligonucleotides to initiate mtDNA replication. We show that the PPR domain of Drosophila mitochondrial RNA polymerase (PolrMT) has 3′-to-5′ exoribonuclease activity, which is indispensable for PolrMT to synthesize short RNA oligonucleotides and prime DNA replication in vitro. An exoribonuclease-deficient mutant, PolrMTE423P, partially restores mitochondrial transcription but fails to support mtDNA replication when expressed in PolrMT-mutant flies, indicating that the exoribonuclease activity is necessary for mtDNA replication. In addition, overexpression of PolrMTE423P in adult flies leads to severe neuromuscular defects and a marked increase in mtDNA transcript errors, suggesting that exoribonuclease activity may contribute to the proofreading of mtDNA transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PolrMT is required for de novo mtDNA synthesis in Drosophila.
Fig. 2: The PPR domain of PolrMT is a 3′-to-5′ exoribonuclease.
Fig. 3: The exoribonuclease activity of PolrMT is essential for priming DNA replication in vitro.
Fig. 4: PolrMT or its PPR domain preferentially degrades a mismatched RNA–DNA hybrid.
Fig. 5: The exoribonuclease activity of PolrMT is required for mtDNA replication in vivo.
Fig. 6: Expression of the PolrMTE423P transgene in adult flies impairs mitochondrial activity and animal fitness.

Similar content being viewed by others

Data availability

The RNA-sequencing data generated in this study have been deposited at the Gene Expression Omnibus of NCBI with the following accession numbers: GSE154310, GSE192549 and GSE164324. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Z., Zhang, F. & Xu, H. Human mitochondrial DNA diseases and Drosophila models. J. Genet. Genomics 46, 201–212 (2019).

    Article  PubMed  Google Scholar 

  4. Gustafsson, C. M., Falkenberg, M. & Larsson, N.-G. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85, 133–160 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Garesse, R. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118, 649–663 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garesse, R. & Kaguni, L. S. A Drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life 57, 555–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sánchez-Martínez, Á. et al. Modeling human mitochondrial diseases in flies. Biochim. Biophys. Acta 1757, 1190–1198 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jõers, P. & Jacobs, H. T. Analysis of replication intermediates indicates that Drosophila melanogaster mitochondrial DNA replicates by a strand-coupled theta mechanism. PLoS ONE 8, e53249 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ciesielski, G. L., Oliveria, M. T. & Kaguni, L. S. Animal mitochondrial DNA replication. Enzymes 39, 255–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kornberg, A. DNA replication. Trends Biochem. Sci. 9, 122–124 (1984).

    Article  Google Scholar 

  11. Moraes, C. T. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc. Natl Acad. Sci. USA 105, 11122–11127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barshad, G. et al. Mitochondrial DNA transcription and its regulation: an evolutionary perspective. Trends Genet. 34, 682–692 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Torres, T. T. et al. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res. 37, 7509–7518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ringel, R. et al. Structure of human mitochondrial RNA polymerase. Nature 478, 269–273 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Schmitzlinneweber, C. & Small, I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13, 663–670 (2008).

    Article  CAS  Google Scholar 

  17. Rovira, A. G. & Smith, A. G. PPR proteins—orchestrators of organelle RNA metabolism. Physiol. Plant. 166, 451–459 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Manna, S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 113, 93–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Kühl, I. et al. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2, e1600963 (2016).

  20. Posse, V. et al. The amino terminal extension of mammalian mitochondrial RNA polymerase ensures promoter specific transcription initiation. Nucleic Acids Res. 42, 3638–3647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Griep, M. A. Primase structure and function. Indian J. Biochem. Biophys. 32, 171–178 (1995).

    CAS  PubMed  Google Scholar 

  22. Cordes, R. M., Sims, W. B. & Glatz, C. E. Precipitation of nucleic acids with poly(ethyleneimine). Biotechnol. Prog. 6, 283–285 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Fersht, A. in Enzyme Structure and Mechanism 2nd edn, 325–329 (W. H. Freeman and Company, 1977).

  24. DeLuca, S. Z. & Spradling, A. C. Efficient expression of genes in the Drosophila germline using a UAS promoter free of interference by Hsp70 piRNAs. Genetics 209, 381–387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roman, G., Endo, K., Zong, L. & Davis, R. L. P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 98, 12602–12607 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Chen, Y., Gucek, M. & Xu, H. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. EMBO J. 35, 1045–1057 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bratic, A. et al. The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genet. 7, e1002324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, F., Morin, C., Mitchell, G., Ackerley, C. & Robinson, B. H. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem. J. 382, 331–336 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baggio, F. et al. Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. Nucleic Acids Res. 42, 13920–13938 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 19, 118 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Thomas, M. J., Platas, A. A. & Hawley, D. K. Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93, 627–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Acevedo, A. & Andino, R. Library preparation for highly accurate population sequencing of RNA viruses. Nat. Protoc. 9, 1760–1769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gout, J.-F. et al. The landscape of transcription errors in eukaryotic cells. Sci. Adv. 3, e1701484 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Posse, V. et al. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet. 15, e1007781 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. A. PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression. Biochem. J. 416, e5-6 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. Struhl, K. Ribonucleases. Curr. Protoc. Mol. Biol. 8, 3.13.1–3.13.3 (1989).

    Article  Google Scholar 

  37. D’Alessio, G. & Riordan, J. F. Ribonucleases: Structures and Functions (Academic Press, 1997).

  38. Kruszewski, J. & Golik, P. Pentatricopeptide motifs in the N-terminal extension domain of yeast mitochondrial RNA polymerase Rpo41p are not essential for its function. Biochem. Mosc. 81, 1101–1110 (2016).

    Article  CAS  Google Scholar 

  39. Wang, Y. & Shadel, G. S. Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase. Proc. Natl Acad. Sci. USA 96, 8046–8051 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clayton, D. A. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 7, 453–478 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Agaronyan, K., Morozov, Y. I., Anikin, M. & Temiakov, D. Replication–transcription switch in human mitochondria. Science 347, 548–551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirkwood, B. Accuracy in Molecular Processes: Its Control and Relevance to Living System (Springer Science & Business Media, 2012).

  43. Moraes, K. C. RNA surveillance: molecular approaches in transcript quality control and their implications in clinical diseases. Mol. Med. 16, 53–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Jeon, C. & Agarwal, K. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl Acad. Sci. USA 93, 13677–13682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Bratic, A. et al. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat. Commun. 6, 8808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, F. et al. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. EMBO Rep. 16, 520–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Korhonen, J. A., Pham, X. H., Pellegrini, M. & Falkenberg, M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 23, 2423–2429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Enríquez, JoséA., Pérez-Martos, A., López-Pérez, M. J. & Montoya, J. in Methods in Enzymology Vol. 265 (eds Attardi, G. M. & Chomyn, A.) Ch. 6 (Academic Press, 1996).

  50. Gensler, S. et al. Mechanism of mammalian mitochondrial DNA replication: import of mitochondrial transcription factor A into isolated mitochondria stimulates 7S DNA synthesis. Nucleic Acids Res. 29, 3657–3663 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, Z. et al. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol. Biol. Cell 26, 674–684 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Raisch, T. et al. Reconstitution of recombinant human CCR4-NOT reveals molecular insights into regulated deadenylation. Nat. Commun. 10, 3173 (2019).

  53. Webster, M. W., Stowell, J. A. W., Tang, T. T. L. & Passmore, L. A. Analysis of mRNA deadenylation by multi-protein complexes. Methods 126, 95–104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, T. C., Karam, G. & Konigsberg, W. H. Isolation, characterization, and kinetic properties of truncated forms of T4 DNA polymerase that exhibit 3′–5′ exonuclease activity. J. Biol. Chem. 269, 19286–19294 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Arimbasseri, A. G. et al. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet. 11, e1005671 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Freitas for comments and edits on the manuscript, R. Levine for his advice on protein purification and structural modelling, M. Falkenberg for the pBac‐POLγA and pBac‐POLγB plasmids, J. -W. Zhang for advice on riboproteins analyses, the BDSC for various fly stocks, Bestgene Inc. for the transgenic service and Arraystar Inc. for the tRNA-sequencing service. This work was supported by the Intramural Research Program of the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and H.X. conceived the project and designed the experiments. Y.L., Z.C., Z.-H.W., K.M.D., J.T., D.-Y.L. and Y.L. performed the experiments. Y.L., Z.-H.W., M.P., I.T. and H.X. analysed the data. Y.L. and H.X. wrote the manuscript.

Corresponding author

Correspondence to Hong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Expression, purification, and biochemical characterization of the PPR domain of PolrMT.

a, A silver-stained gel showing the purified PPR domain (residues 314-464). b, HPLC-UV (210 nm) chromatogram of the purified PPR domain. c, Mass spectrometry analysis of the purified PPR domain indicating a single peak at 18166.9 dalton, the exact molecular weight of the recombinant PPR domain. d, 50 nM 5’-6-FAM-U29 (left panel), or 50 nM 5’-6-FAM-U29/dA29 hybrid (right panel) was incubated in the ribonuclease assay buffer without any protein and analysed at indicated time points (min), showing no degradation of the substrate over 30 min. e, Exoribonuclease activity of the PPR domain requires divalent cations. A 5’-6-FAM- ssRNA substrate (100 nM) was incubated with the PPR domain or PPRE423P (50 nM) in the presence of 10 mM EDTA, 5 mM Ca2+, 5 mM Mg2+, or 5 mM Mn2+ as indicated. The reaction was incubated for 15 min at 32 °C. f, The PPR domain is not sensitive to broad-spectrum RNase inhibitors. A 5’-6-FAM-ssRNA (50 nM) was incubated with the PPR domain (100 nM) in the absence or the presence of RNase inhibitors and analysed at indicated time points (min). RNase A was used as a control. Data shown represent three independent experiments in a-f.

Source data

Extended Data Fig. 2 The exoribonuclease activity is a conserved feature of metazoan mtRNAPs.

a, Phylogenetic analysis of PPR domains in different PPR proteins using the neighbour-joining algorithm. Distance scale, 0.2 (20%) divergence. b, Sequence alignment of metazoan mtRNAPs’ PPR domains. Conserved residues are highlighted. Abbreviations in (a) and (b): Hs, Homo sapiens; Rn, Rattus norvegicus; Mm, Mus musculus; Xl, Xenopus laevis; Dm, Drosophila melanogaster; Aa, Aedes aegypti. c, Other Drosophila PPR proteins do not have ribonuclease activity. A 5’-Biotin-labelled target ssRNA (50 nM) was incubated with recombinant CG4611, CG4679, CG10302, or CG14786 (100 nM) proteins and analysed at indicated time points (min). Arrowhead indicates the full-length substrate. d, The PPR domain (residues 218-368) of human POLRMT has exoribonuclease activity. A 5’-6-FAM-labelled ssRNA (50 nM) was incubated with recombinant PPR protein of human POLRMT (100 nM) and analysed at indicated time points (min). e, Pseudo-first-order cleavage kinetics of a 5’-6-FAM-labelled target ssRNA by the PPR domain of human POLRMT. Data are presented as mean ± SD of n = 3 independent experiments. f, A Coomassie-stained gel showing the purified POLRMT and POLRMTΔPPR proteins. g, RNA synthesis by human POLRMT or POLRMTΔPPR on a 359 bp PCR fragment of human mtDNA (202-560) spanning the light strand promoter. The arrow indicates the 207 nt run-off product; the arrowhead indicates the 120 nt prematurely terminated transcripts at the CSBII region; the long transcript (open arrowhead) is presumably resulted from the non-specific transcription of the full-length template. Note that POLRMT generates both the run-off product and the prematurely terminated transcript, while POLRMTΔPPR generates the run-off transcript only. Data shown represent three independent experiments in c, d, f and g. h, Schematic illustration showing a 359-bp segment of a human mtDNA noncoding region spanning the light-strand promoter (LSP). CSB, conserved sequence block.

Source data

Extended Data Fig. 3 The E423P substitution abolishes both nuclease and RNA–DNA hybrid binding activities of the PPR domain.

a, A 5’-6-FAM-U29/dA29 hybrid (50 nM; left panel), or a mismatched hybrid of 5’-6-FAM-U29/dC-dA28 (50 nM; right panel) was incubated with 100 nM PPRE423P and analysed at indicated time points (min), showing no degradation of the substrate over 30 min. b, A 5’-6-FAM-U29/dA29 hybrid (50 nM; left panel), or a mismatched hybrid of 5’-6-FAM-U29/dC-dA28 (50 nM; right panel) was incubated with 100 nM PolrMTE423P and analysed at indicated time points (min), showing no degradation of the substrate over 30 min. c, EMSA of 3’-Biotin-labelled matched and mismatched RNA/DNA hybrids (50 nM) in the presence of the PPR domain or PPRE423P at indicated concentrations (μM). The open arrowhead indicates the RNA/DNA hybrid-protein complex; the arrowhead indicates the free probe. d, EMSA of 3’-Biotin-labelled matched and mismatched RNA/DNA hybrids (50 nM) in the presence of PolrMT or PolrMTE423P at indicated concentrations (μM). The open arrowhead indicates the RNA/DNA hybrid-protein complex; the arrowhead indicates the free probe. Data shown represent three independent experiments in a-d.

Source data

Extended Data Fig. 4 Overexpression of PolrMTE423P does not affect mitochondrial nucleoids and mitochondrial transcript level.

a, EdU incorporation (Green) in Drosophila midgut (left panel), and indirect flight muscle (right panel) that were co-stained for ATP synthase (ATPs; Red) to mark mitochondria. EdU puncta localized in mitochondria indicate mtDNA replication. Arrows indicate nuclear genome replication. Note the lack of mtDNA replication in adult muscle. Scale bars, 10 μm. b, Western blot showing the overexpression of PolrMT or PolrMTE423P in adult flies activated by an Act-Gal4:PR. A Bac clone transgene carrying gfp ORF inserted in-frame at the 3’ end of PolrMT gene was included as a reference for the endogenous level of PolrMT protein. Actin was used as the loading control. c, Relative levels of mtDNA and mtRNA in adult thoraxes of PolrMT and PolrMTE423P overexpressing flies. Value of each sample was normalized to the average of PolrMT, and data are presented as mean ± SD of n = 3 biologically independent experiments. d, Indirect flight muscle of PolrMT or PolrMTE423P overexpressing flies stained for TFAM (Red) and ATP synthase (ATPs, Green) that mark mtDNA and mitochondria, respectively. Scale bars, 10 μm. Images in a, b, and d represent three independent experiments. e, Quantification of mitochondrial contents by normalizing mitochondrial volume (voxels) to total voxels of the tissue. ns: p = 0.8168. f, Number of TFAM puncta per μm3 in indirect flight muscles. ns: p = 0.8901. g, Mean arbitrary TFAM intensity in indirect flight muscles. ns: p = 0.2397. In (e-g), n = 20 animals were examined over 3 independent experiments for each genotype; the middle lines denote the median. P values were determined using the Two‐tailed Student’s t-test. Genotypes of all lines used in (c-g) are provided in Supplementary Table 1.

Source data

Extended Data Fig. 5 Poly(A) tail length and transcription errors of mitochondrial transcripts in PolrMT- and PolrMTE423P-overexpressing flies.

a, Quantification of poly(A) tail length of all 13 mitochondrial transcripts in control (ctrl), PolrMT and PolrMTE423P overexpressing flies. Data are presented as mean ± SD of n = 10 clones for each transcript. b, The mitochondrial transcription errors in PolrMT and PolrMTE423P overexpression flies were distributed randomly across the mitochondrial genome. Most errors were in highly transcribed genes. “Error reads” indicates the total number of errors detected in a 100-bp bin. “Error frequency” was calculated by normalizing the number of error reads to the total number of reads within that interval. c, The spectrum and frequency of transcripts errors in PolrMT and PolrMTE423P overexpressing flies. Genotypes of all lines in (a-c) are provided in Supplementary Table 1.

Source data

Supplementary information

Reporting Summary

Peer Review File

Supplementary Tables 1–5

All five supplementary tables in one MS Excel file. Supplementary Table 1. All D. melanogaster lines used in this study. The genotypes, sources and identification information are listed. Supplementary Table 2. List of all unprocessed RNA junctions and their frequencies in POLRMT- and POLRMTE423P-overexpressing flies. Supplementary Table 3. List of all tRNA counts in POLRMT- and POLRMTE423P-overexpressing flies. Supplementary Table 4. List of all plasmids generated in this study. Supplementary Table 5. List of all oligonucleotides used in this study.

Source data

Source Data Fig. 1

Unprocessed images, gels and blots.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Unprocessed images, gels and blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Unprocessed images, gels and blots.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Unprocessed images, gels and blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Unprocessed images, gels and blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed images, gels and blots.

Source Data Extended Data Fig. 2

Unprocessed images, gels and blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Unprocessed images, gels and blots.

Source Data Extended Data Fig. 4

Unprocessed images, gels and blots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Z., Wang, ZH. et al. The PPR domain of mitochondrial RNA polymerase is an exoribonuclease required for mtDNA replication in Drosophila melanogaster. Nat Cell Biol 24, 757–765 (2022). https://doi.org/10.1038/s41556-022-00887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-00887-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer