Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

DNA REPAIR

Unsprung traps keep PARP inhibitors effective

Understanding how cancers react to poly(ADP-ribose) polymerase (PARP) trapping on DNA is crucial to thwart PARP inhibitor resistance. A recent study finds that trapped PARP1 is removed via the ubiquitin-dependent segregase p97, and that perturbing this molecular cascade increases PARP inhibitor cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key molecular events that lead to the release of trapped PARP1 from DNA.

References

  1. Hu, Y. et al. Cancer Discov. 4, 1430–1447 (2014).

    Article  CAS  Google Scholar 

  2. Moore, S. et al. Nat. Commun. 10, 241 (2019).

    Article  Google Scholar 

  3. Lord, C. J. et al. Science 355, 1152–1158 (2017).

    Article  CAS  Google Scholar 

  4. Murai, J. et al. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  Google Scholar 

  5. Krastev, D. B. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00807-6 (2021).

  6. van den Boom, J. et al. Mol. Cell. 69, 182–194 (2018).

    Article  Google Scholar 

  7. Meyer, H. et al. J. Cell. Sci. 127, 3877–3883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Maric, M. et al. Science 346, 1253596 (2014).

    Article  Google Scholar 

  9. Raman, M. et al. Mol. Cell. 44, 72–84 (2011).

    Article  CAS  Google Scholar 

  10. Zandarashvili, L. et al. Science 368, eaax6367 (2020).

    Article  CAS  Google Scholar 

  11. Pettitt, S. J. et al. Nat. Commun. 9, 1849 (2018).

    Article  Google Scholar 

  12. Kroonen, J. S. et al. Trends Cancer 7, 496–510 (2021).

    Article  CAS  Google Scholar 

  13. Deng, L. et al. Signal Transduct. Target Ther. 5, 11 (2020).

    Article  CAS  Google Scholar 

  14. Vekaria, P. H. et al. Front. Oncol. 6, 181 (2016).

    Article  Google Scholar 

  15. Fielden, J. et al. Nat. Commun. 11, 1274 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.M.B. and L.P. contributed equally to this News and Views. A.A.G. is the Canada Research Chair for Radiation Exposure Disease and this work was undertaken, in part, thanks to funding from the Canada Research Chairs program.

Corresponding author

Correspondence to Aaron A. Goodarzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brownlee, P.M., Provencher, L. & Goodarzi, A.A. Unsprung traps keep PARP inhibitors effective. Nat Cell Biol 24, 2–4 (2022). https://doi.org/10.1038/s41556-021-00819-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00819-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing