Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control

Abstract

Mitochondrial-derived vesicles (MDVs) are implicated in diverse physiological processes—for example, mitochondrial quality control—and are linked to various neurodegenerative diseases. However, their specific cargo composition and complex molecular biogenesis are still unknown. Here we report the proteome and lipidome of steady-state TOMM20+ MDVs. We identified 107 high-confidence MDV cargoes, which include all β-barrel proteins and the TOM import complex. MDV cargoes are delivered as fully assembled complexes to lysosomes, thus representing a selective mitochondrial quality control mechanism for multi-subunit complexes, including the TOM machinery. Moreover, we define key biogenesis steps of phosphatidic acid-enriched MDVs starting with the MIRO1/2-dependent formation of thin membrane protrusions pulled along microtubule filaments, followed by MID49/MID51/MFF-dependent recruitment of the dynamin family GTPase DRP1 and finally DRP1-dependent scission. In summary, we define the function of MDVs in mitochondrial quality control and present a mechanistic model for global GTPase-driven MDV biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biochemical purification of TOMM20+ MDVs.
Fig. 2: The proteome of TOMM20+ MDVs.
Fig. 3: TOMM20+ MDVs contain assembled import and β-barrel protein complexes.
Fig. 4: MIRO1/2-dependent membrane protrusions precede TOM+-MDV biogenesis.
Fig. 5: TOM+-MDV biogenesis requires microtubules.
Fig. 6: The lipidome of TOM+ MDVs.
Fig. 7: TOM+-MDV formation depends on DRP1.
Fig. 8: TOM+-MDV scission depends on the recruitment of DRP1 by MID49, MID51 or MFF.

Similar content being viewed by others

Data availability

The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD023077. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Deshwal, S., Fiedler, K. U. & Langer, T. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu. Rev. Biochem. 89, 501–528 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Mozaheb, N. & Mingeot-Leclercq, M. P. Membrane vesicle production as a bacterial defense against stress. Front. Microbiol. 11, 600221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, W., Smeekens, J. M. & Wu, R. Systematic study of the dynamics and half-lives of newly synthesized proteins in human cells. Chem. Sci. 7, 1393–1400 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 4230 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Soubannier, V., Rippstein, P., Kaufman, B. A., Shoubridge, E. A. & McBride, H. M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE 7, e52830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sugiura, A., Mattie, S., Prudent, J. & McBride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, M. Y. et al. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94, 595–610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matheoud, D. et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166, 314–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Todkar, K. et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun. 12, 1971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matheoud, D. et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− mice. Nature 571, 565–569 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Hughes, A. L., Hughes, C. E., Henderson, K. A., Yazvenko, N. & Gottschling, D. E. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife https://doi.org/10.7554/eLife.13943 (2016).

  19. English, A. M. et al. ER–mitochondria contacts promote mitochondrial-derived compartment biogenesis. J. Cell. Biol. https://doi.org/10.1083/jcb.202002144 (2020).

  20. McLelland, G. L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214, 275–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, P. J. et al. Mitochondrial protrusions in neuronal cells. iScience 23, 101514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cadete, V. J. et al. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J. Physiol. 594, 5343–5362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rugarli, E. I. & Langer, T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 31, 1336–1349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Johnston, A. J. et al. Insertion and assembly of human Tom7 into the preprotein translocase complex of the outer mitochondrial membrane. J. Biol. Chem. 277, 42197–42204 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ordureau, A. et al. Global landscape and dynamics of Parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling. Mol. Cell 77, 1124–1142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phu, L. et al. Dynamic regulation of mitochondrial import by the ubiquitin system. Mol. Cell 77, 1107–1123 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    Article  PubMed  Google Scholar 

  29. Takeda, H. et al. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 590, 163–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Qin, J. et al. ER–mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nat. Commun. 11, 4471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwarz, T. L. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a011304 (2013).

  32. Nguyen, T. T. et al. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl Acad. Sci. USA 111, E3631–E3640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopez-Domenech, G. et al. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J. 37, 321–336 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanfer, G. et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6, 8015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanfer, G. et al. CENP-F couples cargo to growing and shortening microtubule ends. Mol. Biol. Cell 28, 2400–2409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopez-Domenech, G. et al. The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun. 3, 814 (2012).

    Article  PubMed  Google Scholar 

  37. Cartoni, R. et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92, 1294–1307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mirra, S., Ulloa, F., Gutierrez-Vallejo, I., Marti, E. & Soriano, E. Function of Armcx3 and Armc10/SVH genes in the regulation of progenitor proliferation and neural differentiation in the chicken spinal cord. Front. Cell Neurosci. 10, 47 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta 822, 1–42 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Pellon-Maison, M., Montanaro, M. A., Coleman, R. A. & Gonzalez-Baro, M. R. Mitochondrial glycerol-3-P acyltransferase 1 is most active in outer mitochondrial membrane but not in mitochondrial associated vesicles (MAV). Biochim. Biophys. Acta 1771, 830–838 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prasad, S. S., Garg, A. & Agarwal, A. K. Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria. J. Lipid Res. 52, 451–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, H. et al. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhukovsky, M. A., Filograna, A., Luini, A., Corda, D. & Valente, C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 593, 2428–2451 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Adachi, Y. et al. Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol. Cell 63, 1034–1043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adachi, Y., Iijima, M. & Sesaki, H. An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases 9, 472–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Merrill, R. A. et al. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol. 9, e1000612 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, R. et al. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J. Biol. Chem. 294, 17262–17277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamashita, A. et al. Formation of mitochondrial outer membrane derived protrusions and vesicles in Arabidopsis thaliana. PLoS ONE 11, e0146717 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Purkanti, R. & Thattai, M. Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc. Natl Acad. Sci. USA 112, 2800–2805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kameoka, S., Adachi, Y., Okamoto, K., Iijima, M. & Sesaki, H. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 28, 67–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2, e00422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER–mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nagashima, S. et al. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science 367, 1366–1371 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Augustin, S. et al. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J. Biol. Chem. 280, 2691–2699 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Towers, C. G. et al. Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev. Cell 56, 2029–2042 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Ryan, T. A. et al. Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles. EMBO J. 39, e102539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abeliovich, H., Zarei, M., Rigbolt, K. T., Youle, R. J. & Dengjel, J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun. 4, 2789 (2013).

    Article  PubMed  Google Scholar 

  63. Bruderek, M. et al. IMiQ: a novel protein quality control compartment protecting mitochondrial functional integrity. Mol. Biol. Cell 29, 256–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Guerroue, F. et al. Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway. Mol. Cell 68, 786–796 (2017).

    Article  PubMed  Google Scholar 

  65. Abudu, Y. P. et al. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J. Cell Biol. https://doi.org/10.1083/jcb.202009092 (2021).

  66. Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 485–488 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, X. & Chen, X. J. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524, 481–484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boos, F. et al. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21, 442–451 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Weidberg, H. & Amon, A. MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress. Science https://doi.org/10.1126/science.aan4146 (2018).

  70. Martensson, C. U. et al. Mitochondrial protein translocation-associated degradation. Nature 569, 679–683 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Izawa, T., Park, S. H., Zhao, L., Hartl, F. U. & Neupert, W. Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171, 890–903 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Gerber, S. et al. Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain 140, 2586–2596 (2017).

    Article  PubMed  Google Scholar 

  73. Serasinghe, M. N. & Chipuk, J. E. Mitochondrial fission in human diseases. Handb. Exp. Pharmacol. 240, 159–188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lopez-Domenech, G. et al. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response. EMBO J. 40, e100715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neumann, D., Buckers, J., Kastrup, L., Hell, S. W. & Jakobs, S. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys. 3, 4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Wittig, I., Braun, H. P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Article  PubMed  Google Scholar 

  81. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Nolte, H., MacVicar, T. D., Tellkamp, F. & Kruger, M. Instant Clue: a software suite for interactive data visualization and analysis. Sci. Rep. 8, 12648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, A. C. & Robinson, A. J. MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res. 47, D1225–D1228 (2019).

    Article  PubMed  Google Scholar 

  86. Cotter, D., Guda, P., Fahy, E. & Subramaniam, S. MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res. 32, D463–D467 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tatsuta, T. Quantitative analysis of glycerophospholipids in mitochondria by mass spectrometry. Methods Mol. Biol. 1567, 79–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Ozbalci, C., Sachsenheimer, T. & Brugger, B. Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol. Biol. 1033, 3–20 (2013).

    Article  PubMed  Google Scholar 

  89. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Kornmann, M. Frohman and S. Jakobs for sharing constructs and giving advice regarding super-resolution microscopy. This work was supported by a Feodor Lynen postdoctoral research fellowship awarded to T.K. by the Alexander von Humboldt Foundation and CIHR grant no. MOP#133549 to H.M.M. H.M.M is supported by a Canada Research Chair in Mitochondrial Cell Biology. M.J.A. was supported by a postdoctoral fellowship from the Healthy Brains Healthy Lives initiative. T.L. is supported by the Max–Planck Society and grants from the Deutsche Forschungsgemeinschaft (CRC1218, project number 269925409).

Author information

Authors and Affiliations

Authors

Contributions

T.K. and H.M.M. designed the study and wrote the manuscript. T.K., H.N., M.J.A., T.T., M.K. and T.S. planned and performed the experiments. T.L. contributed to the manuscript and fruitful discussions.

Corresponding author

Correspondence to Heidi M. McBride.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Cell Biology thanks Thomas Becker, and the other, anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Mitochondrial integrity and pre-clearing efficiency.

a) Representative confocal images of TOMM20+-MDVs in COS-7 cells. MDVs are positive for TOMM20 and negative for PDH. Scale bar = 5 µm. b) Representative confocal images of TOMM20+-MDVs in COS-7 cells expressing human TOMM20-3xHA and MAPL-h319L-Halo. Scale bar = 5 µm. The close-up demonstrates the unchanged cargo specificity of TOMM20+-MDVs in these cells. Orange circles = MDVs only positive for TOMM20. Scale bar = 1 µm. c) SDS-PAGE analysis of mitochondrial integrity after homogenization of cells by protease protection. Mitochondria were either untreated, swollen, or swollen and solubilized by Triton X-100 (TX100) in the presence of Proteinase K. OMM = outer mitochondrial membrane, IMS = intermembrane space. d) Quantification of the intermembrane space protein YME1L after Proteinase K treatment as a readout for the integrity of the outer mitochondrial membrane. Three experiments with single values (circles), averages (bars) and standard deviations (error bars) are shown (n = 3 biologically independent experiments). e-g) SDS-PAGE analysis (e) and quantifications (f, g) of pre-clearing efficiency through Halo link resin. Three experiments with single values (circles), averages (bars) and standard deviations (error bars) are shown (two-tailed unpaired Student’s t-test: ** = p ≤ 0.01, *** = p ≤ 0.001, n = 3 biologically independent experiments). Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 2 Validation of MDV hits by super-resolution microscopy.

a) SDS-PAGE analysis of the immuno-isolation of TOMM20+-MDVs validating the specific enrichment of a subset of mitochondrial proteins. Mitochondrial proteins LONP1, LRPPRC, and cytosolic free-Ubiquitin serve as negative markers. IN = input, E = elution, OMM = outer mitochondrial membrane, IMM = inner mitochondrial membrane. b) SDS-PAGE analysis demonstrating the enrichment of TOMM20+-MDVs cargoes in MDVs. 5 µg of isolated mitochondria (MITO) and MDVs were loaded. LONP1 and LRPPRC serve as negative markers. c-d) Super-resolution microscopy of selected endogenous MDV hits from the outer mitochondrial membrane (c) and the inner mitochondrial membrane (d) in COS-7 cells. TOMM20 serves as positive MDV marker and PDH/MRPL12 as MDV-negative mitochondrial marker. Orange circles = double positive MDVs, cyan circles = MDVs only positive for TOMM20, scale bar = 1 µm. Unprocessed blots are available in source data.

Source data

Extended Data Fig. 3 Blue-native PAGE analysis of oligomeric protein complexes.

a) Blue-native PAGE analysis of digitonin-solubilized (1.5%, 6 g digitonin/g protein) COS-7 mitochondria and biochemically purified TOMM20+-MDVs. Comparison of mitochondria with MDVs reveals assembly of MDV-enriched respiratory chain subunits into oligomeric complexes comparable to their mitochondrial assemblies. b) SDS-Page analysis to confirm the siRNA-mediated knockdown of USP30 in COS-7 cells after 72 hours. * = unspecific cross reaction. c) SDS-PAGE analysis of biochemically purified TOMM20+-MDVs to address the ubiquitylation state of TOM complex subunits in MDVs in comparison to mitochondria (MITO). IN = input, E = elution. d) SDS-PAGE analysis of PARK2 CRISPR/Cas9 KO COS-7 cell lines. * = unspecific cross reaction. e-f) Quantification of TOM+-MDVs (e) in non-targeting (NT) and FUNDC1-silenced COS-7 cells after 72 hours verified by SDS-PAGE (f). Counted MDVs are positive for TOMM40 and negative for PDH and MRPL12. Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: n = 3 biologically independent experiments). Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 4 SNX9 and STX17 are not required for biogenesis of TOM+-MDVs.

a) Confocal images of TOMM20+-MDVs in COS-7 cells stably expressing hTOMM20-EGFP (green) used for live cell microscopy. Mitochondria are stained with MitoTracker Deep Red FM (magenta). Scale bar = 5 µm. b-e) Quantifications and SDS-PAGE analysis of TOM+-MDVs in SNX9 (b, d) and STX17 (c, e) CRISPR/Cas9 KO and COS-7 control cells. Counted MDVs are positive for TOMM40 and negative for PDH and MRPL12. Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: n = 3 biologically independent experiments). * = unspecific cross reaction. f) Super-resolution microscopy of ectopically-expressed 3xFLAG-hMIRO1 and 3xFLAG-hMIRO2 in COS-7 cells. TOMM20 serves as positive MDV marker and PDH/MRPL12 as MDV-negative mitochondrial marker. Orange circles = double positive MDVs. Scale bar = 1 µm. g-i) SDS-PAGE analysis to confirm the siRNA-mediated knockdown of MIRO1/2 (g), CENP-F (h) and ARMCX1/3 (i) in COS-7 cells after 72 hours. Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 5 PTPIP51, YME1L and MCU are TOM+-MDV cargoes.

a-f) Quantification of TOM+-MDVs in non-targeting (NT), PTPIP51- (a), YME1L- (b), and MCU-silenced (c) COS-7 cells after 72 hours verified by SDS-PAGE (d-f). Counted MDVs are positive for TOMM40 and negative for PDH and MRPL12. Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: n = 3 biologically independent experiments). g-h) Quantifications of TOM+-MDVs in non-targeting (NT) and MIRO1/MIRO2-silenced COS-7 cells after 72 hours grown (g), or COS-7 cells treated with 15 µM Nocodazole for 2 hours (h) under galactose conditions (5 days). Counted MDVs are positive for TOMM40 and negative for PDH and MRPL12. Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: *** = p ≤ 0.001, n = 3 biologically independent experiments). i) Representative images of double-positive TOM+/PDH+-MDVs and PDH+-MDVs in COS-7 cells grown under galactose conditions (5 days). Scale bar = 10 µm / 2 µm (close-up). Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 6 Phospholipid composition of TOM+-MDVs, the outer mitochondrial membrane and mitochondria.

a-b) Schematic representation (A) and SDS-PAGE analysis (B) of the purification of mitochondria by Percoll-density-gradient centrifugation. c-d) Comparison of phospholipid composition, ceramides (CER) and sphingomyelin (SM) (d) between the outer mitochondrial membrane (OMM) and Percoll-purified mitochondria (MITO). Three experiments with single values (circles), averages (bars) and standard deviations (error bars) are shown. Inlay: close-up for phosphatidic acid (PA) and phosphatidylglycerol (PG). Two-tailed unpaired Student’s t-test (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, n = 3 biologically independent experiments). PC = phosphatidylcholine, PE = phosphatidylethanolamine, PI = phosphatidylinositol, PS = phosphatidylserine, CL = cardiolipin. e-f) Comparison of acyl chain length (e) and level of saturation (f) of phospholipids between the OMM, TOM+-MDVs (MDV) and Percoll-purified mitochondria (MITO). Three experiments with single values (circles), averages (bars) and standard deviations (error bars) are shown. (n = 3 biologically independent experiments) Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 7 Biogenesis of PDH-containing MDVs depends on DRP1.

a-c) SDS-PAGE analysis of DNM2 and DRP1 KO COS-7 cell lines (a), DRP1 KO COS-7 cells stably expressing human DRP1 (b) and DRP1 KO HeLa cells (c). * = unspecific cross reaction. d) Quantification of TOM+-MDVs in HeLa WT and two DRP1 KO clones. Counted MDVs are positive for TOMM40 and negative for PDH and MRPL12. Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: ** = p ≤ 0.01, n = 3 biologically independent experiments). e-g) Quantifications of TOM+-MDVs (e), double-positive TOM+/PDH+-MDVs (f) as well as classical PDH+-MDVs (g) in WT, DRP1 KO and DRP1 KO COS-7 cells rescued with human DRP1 grown under galactose conditions (5 days). Counted MDVs are negative for PDH and MRPL12 (e), MRPL12 (f), or TOMM40 and MRPL12 (g). Single values and means of three experiments are depicted in orange, cyan and grey. Means were used to calculate averages (horizontal bars), standard deviations (error bars), and p-values (two-tailed unpaired Student’s t-test: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, n = 3 biologically independent experiments). Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Extended Data Fig. 8 Mitochondrial morphology changes do not correlate with TOM+-MDV formation.

a) SDS-PAGE analysis of isolated mitochondria from WT and different combinations of MID49, MID51 and MFF double KO COS-7 cells. * = unspecific cross reaction. b-d) Quantification of mitochondrial morphology changes in COS-7 cells treated with 20 µM CCCP for 30 minutes (b), 10 µg / ml cycloheximide (CHX) for 2 hours (c) or 30 µM Forskolin (FORS.) for 2 hours (d). Three experiments with single values (orange, cyan & grey circles), averages (bars) and standard deviations (error bars) are shown. Two-tailed unpaired Student’s t-test (*** = p ≤ 0.001, n = 3 biologically independent experiments). e-f) Quantification of mitochondrial morphology changes (e) in DRP1 KO COS-7 cells stably expressing human DRP1 mutants and SDS-PAGE analysis of the expression levels (f). Three experiments with single values (orange, cyan & grey circles), averages (bars) and standard deviations (error bars) are shown (n = 3 biologically independent experiments). Unprocessed blots and numerical source data including exact p values and test statistics are available in source data.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Unprocessed western blots.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Fig. 8

Unprocessed western blots.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Unprocessed western blots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 4

Unprocessed western blots.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 5

Unprocessed western blots.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 8

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, T., Nolte, H., Aaltonen, M.J. et al. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. Nat Cell Biol 23, 1271–1286 (2021). https://doi.org/10.1038/s41556-021-00798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00798-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing