Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Heterochromatin

Deconfining heterochromatin for expression

Lineage-specific gene expression programs in multicellular organisms are controlled by balanced ON and OFF signals, amongst which heterochromatin regulates expression by restricting activation cues. A study now provides insights into mammalian heterochromatin organisation, function and interplay with lineage-specific transcription factors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between heterochromatin and transcription factors in gene regulation.

References

  1. Soufi, A., Donahue, G. & Zaret, K. S. Cell 151, 994–1004 (2012).

    Article  CAS  Google Scholar 

  2. Becker, J. S. et al. Mol. Cell 68, 1023–1037.e15 (2017).

    Article  CAS  Google Scholar 

  3. Nicetto, D. & Zaret, K. S. Curr. Opin. Genet. Dev. 55, 1–10 (2019).

    Article  CAS  Google Scholar 

  4. Matoba, S. et al. Cell 159, 884–895 (2014).

    Article  CAS  Google Scholar 

  5. Onder, T. T. et al. Nature 483, 598–602 (2012).

    Article  CAS  Google Scholar 

  6. McCarthy, R. L. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-021-00725-7 (2021).

  7. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  8. Burton, A. et al. Nat. Cell Biol. 22, 767–778 (2020).

    Article  CAS  Google Scholar 

  9. Domcke, S. et al. Nature 528, 575–579 (2015).

    Article  CAS  Google Scholar 

  10. Hermant, C. & Torres-Padilla, M. E. Genes Dev. 35, 22–39 (2021).

    Article  CAS  Google Scholar 

  11. Wojcik, E., Murphy, A. M., Fares, H., Dang-Vu, K. & Tsubota, S. I. Genetics 138, 1163–1170 (1994).

    Article  CAS  Google Scholar 

  12. Graille, M. & Rougemaille, M. Curr. Genet. 66, 689–692 (2020).

    Article  CAS  Google Scholar 

  13. Sugiyama, T. et al. Mol. Cell 61, 747–759 (2016).

    Article  CAS  Google Scholar 

  14. Padeken, J. et al. Genes Dev. 35, 82–101 (2021).

    Article  CAS  Google Scholar 

  15. Aravin, A. A., Hannon, G. J. & Brennecke, J. Science 318, 761–764 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Elena Torres-Padilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, A., Torres-Padilla, ME. Deconfining heterochromatin for expression. Nat Cell Biol 23, 814–816 (2021). https://doi.org/10.1038/s41556-021-00726-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-021-00726-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing