Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover

Abstract

How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing “BioRBP”, an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X–X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: BioRBP, a new method to decrypt the RNA proteome of Tsix, identifies DCP1A.
Fig. 2: DCP1A resolves X–X pairs and is required for XCI initiation.
Fig. 3: Allele-specific RNA ablation establishes the essential nature of Tsix RNA.
Fig. 4: Tsix RNA drives formation of X–X pairs and DCP1A resolves the paired state.
Fig. 5: CTCF-degron analysis shows that pairing frequency depends on CTCF levels.
Fig. 6: Tsix RNA sequesters CTCF from chromatin and controls allelic partitioning of CTCF.
Fig. 7: DCP1A regulates Tsix stability and transcription elongation.
Fig. 8: DCP1A breaks X-chromosome symmetry.

Data availability

Raw and processed sequencing data files have been deposited at the Gene Expression Omnibus under accession number GSE118943. Raw and processed proteomic data files have been deposited at ProteomeXchange under accession number PXD019133. Previously published DRIP-seq data were reanalysed here and the original raw data are available at Gene Expression Omnibus under accession code GSE67581. All other data supporting the findings are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Chess, A. Monoallelic gene expression in mammals. Annu. Rev. Genet. 50, 317–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Eckersley-Maslin, M. A. & Spector, D. L. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet. 30, 237–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Disteche, C. M. Dosage compensation of the sex chromosomes. Annu. Rev. Genet. 46, 537–560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Starmer, J. & Magnuson, T. A new model for random X chromosome inactivation. Development 136, 1–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J. T. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat. Rev. Mol. Cell Biol. 12, 815–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wutz, A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet. 12, 542–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Mira-Bontenbal, H. & Gribnau, J. New Xist-interacting proteins in X-chromosome inactivation. Curr. Biol. 26, R338–R342 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Barakat, T. S. et al. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol. Cell 53, 965–978 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Monkhorst, K., Jonkers, I., Rentmeester, E., Grosveld, F. & Gribnau, J. X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 132, 410–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Gayen, S., Maclary, E., Buttigieg, E., Hinten, M. & Kalantry, S. A primary role for the Tsix lncRNA in maintaining random X-chromosome inactivation. Cell Rep. 11, 1251–1265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J. T. Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nat. Genet. 32, 195–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J. T. Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309, 768–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, N., Tsai, C. L. & Lee, J. T. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Penny, G., Kay, G., Sheardown, S., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–138 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Vigneau, S., Augui, S., Navarro, P., Avner, P. & Clerc, P. An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc. Natl Acad. Sci. USA 103, 7390–7395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Masui, O. et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145, 447–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sado, T., Hoki, Y. & Sasaki, H. Tsix silences Xist through modification of chromatin structure. Dev. Cell 9, 159–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ohhata, T., Senner, C. E., Hemberger, M. & Wutz, A. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice. Genes Dev. 25, 1702–1715 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bacher, C. P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol. 8, 293–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, N., Donohoe, M. E., Silva, S. S. & Lee, J. T. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat. Genet. 39, 1390–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Chu, H. P. et al. PAR-TERRA directs homologous sex chromosome pairing. Nat. Struct. Mol. Biol. 24, 620–631 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kung, J. T. et al. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol. Cell 57, 361–375 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scialdone, A. & Nicodemi, M. Mechanics and dynamics of X-chromosome pairing at X inactivation. PLoS Comput. Biol. 4, e1000244 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Carrel, L. “X”-rated chromosomal rendezvous. Science 311, 1107–1109 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Donohoe, M. E., Silva, S. S., Pinter, S. F., Xu, N. & Lee, J. T. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460, 128–132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Meguro-Horike, M. et al. Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome. Hum. Mol. Genet. 20, 3798–3810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thatcher, K. N., Peddada, S., Yasui, D. H. & Lasalle, J. M. Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Hum Mol Genet 14, 785–797 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Stathopoulou, C., Kapsetaki, M., Stratigi, K. & Spilianakis, C. Long non-coding RNA SeT and miR-155 regulate the Tnfα gene allelic expression profile. PLoS ONE 12, e0184788 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stratigi, K. et al. Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression. Proc. Natl Acad. Sci. USA 112, E1577–E1586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Article  CAS  Google Scholar 

  36. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shibata, S. & Lee, J. T. Characterization and quantitation of differential Tsix transcripts: implications for Tsix function. Hum. Mol. Genet. 12, 125–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Beelman, C. A. et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642–646 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jia, J. et al. Regulation of pluripotency and self- renewal of ESCs through epigenetic-threshold modulation and mRNA pruning. Cell 151, 576–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell 46, 311–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Plessel, G., Fischer, U. & Luhrmann, R. m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Mol. Cell. Biol. 14, 4160–4172 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalkan, T. et al. Tracking the embryonic stem cell transition from ground state pluripotency. Development 144, 1221–1234 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shibata, S. & Lee, J. T. Tsix transcription- versus RNA-based mechanisms in Xist repression and epigenetic choice. Curr Biol 14, 1747–1754 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Lim, F., Downey, T. P. & Peabody, D. S. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem. 276, 22507–22513 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohhata, T. et al. Histone H3 lysine 36 trimethylation is established over the Xist promoter by antisense Tsix transcription and contributes to repressing Xist expression. Mol. Cell. Biol. 35, 3909–3920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ogawa, Y., Sun, B. K. & Lee, J. T. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 340, 619–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boguslawski, S. J. et al. Characterization of monoclonal antibody to DNA·RNA and its application to immunodetection of hybrids. J. Immunol. Methods 89, 123–130 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, P. B., Chen, H. V., Acharya, D., Rando, O. J. & Fazzio, T. G. R loops regulate promoter-proximal chromatin architecture and cellular differentiation. Nat. Struct. Mol. Biol. 22, 999–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Senner, C. E. et al. Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development 138, 1541–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Payer, B. et al. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol. Cell 52, 805–818 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Pampfer, S. & Donnay, I. Apoptosis at the time of embryo implantation in mouse and rat. Cell Death Differ. 6, 533–545 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Gayen, S., Maclary, E., Hinten, M. & Kalantry, S. Sex-specific silencing of X-linked genes by Xist RNA. Proc. Natl Acad. Sci. USA 113, E309–E318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Froberg, J. E., Pinter, S. F., Kriz, A. J., Jegu, T. & Lee, J. T. Megadomains and superloops form dynamically but are dispensable for X chromosome inactivation and gene escape. Nat. Commun. 9, 5004 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pollex, T. & Heard, E. Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determinants during initiation of random X-inactivation. Nat. Genet. 51, 285–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S. & Lee, J. T. CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295, 345–347 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cifuentes-Rojas, C., Hernandez, A. J., Sarma, K. & Lee, J. T. Regulatory interactions between RNA and polycomb repressive complex 2. Mol. Cell 55, 171–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaneko, S., Son, J., Bonasio, R., Shen, S. S. & Reinberg, D. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 28, 1983–1988 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, X. et al. Targeting of polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol. Cell 65, 1056–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Chu, H. P. et al. TERRA RNA antagonizes ATRX and protects telomeres. Cell 170, 86–101 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spencer, R. J. et al. A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 189, 441–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Porro, A. et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nat. Commun. 5, 5379 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, D. E. et al. The DXPas34 repeat regulates random and imprinted X inactivation. Dev. Cell 12, 57–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Navarro, P., Pichard, S., Ciaudo, C., Avner, P. & Rougeulle, C. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev. 19, 1474–1484 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, B. K., Deaton, A. M. & Lee, J. T. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol. Cell 21, 617–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saldana-Meyer, R. et al. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev. 28, 723–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flemr, M. & Buhler, M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 12, 709–716 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  81. Wiznerowicz, M. & Trono, D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 4, 2848 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Roux, K. J., Kim, D. I. & Burke, D. BioID: a screen for protein-protein interactions. Curr. Protoc. Protein Sci. 91, 19.23.1–19.23.15 (2018).

    CAS  Google Scholar 

  84. Edwards, A. & Haas, W. Multiplexed quantitative proteomics for high-throughput comprehensive proteome comparisons of human cell lines. Methods Mol. Biol. 1394, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. McAlister, G. C. et al. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, L., Kirby, J. E., Sunwoo, H. & Lee, J. T. Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes Dev. 30, 1747–1760 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Pinter, S. F. et al. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22, 1864–1876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Min, I. M. et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev. 25, 742–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sunwoo, H., Wu, J. Y. & Lee, J. T. The Xist RNA–PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc. Natl Acad. Sci. USA 112, E4216–E4225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Del Rosario, B. C. et al. Genetic Intersection of Tsix and Hedgehog signaling during the initiation of X-chromosome inactivation. Dev. Cell 43, 359–371 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Advanced Postdoc Mobility Fellowship from the Swiss National Science Foundation (SNSF) to E.A., an NSF Predoctoral Fellowship and Herschel Smith Fellowship to A.K. and grants from the NIH (R01-GM58839) and the Howard Hughes Medical Institute to J.T.L. We thank B. Nabet and N. S. Gray for advice in generating the CTCF–FKBPdegron line and for the generous gift of dTAG-13; C. Cifuentes-Rojas, M. Blower, A. J. Hernandez, Y. Jeon and A.-S. Reis for technical advice and discussion; D. Trono and I. Barde for lentiviral constructs; E. Heard for sharing the XTetOXTetO/laminB cells; W. Press for mouse management; D. Colognori for oligonucleotides FISH probes; and L. Carrette, Y. Jeon, A. Szanto, J. E. Froberg, R. Aguilar and C. Y. Wang for qPCR primers.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and J.T.L. designed the project, analysed data and wrote the paper. E.A. established Tsix allele-specific targeting, Xist and Tsix BioRBP, and performed DCP1A, FISH and ChIP experiments. E.A. performed PRO-seq and RNA-seq experiments. Y.-W.L. performed pairing assays in CTCF–FKBPdegron and XTetOXTetO/laminB cells. H.-G.L. conducted DRIP-seq and PRO-seq bioinformatic analyses with assistance from E.A. A.K. constructed the CTCF–FKBPdegron cell lines. B.C.d.R. performed the apoptosis analysis in mouse embryos with assistance from E.A. H.J.O. performed allelic CTCF ChIP experiments with E.A. Mass spectrometry analysis was conducted by M.B. and W.H.

Corresponding author

Correspondence to Jeannie T. Lee.

Ethics declarations

Competing interests

J.T.L. cofounded Translate Bio and Fulcrum Therapeutics and serves as an advisor to Skyhawk Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Generation of Tsix BioRBP 5’ and 3’ clones.

a, PCR-screening for homozygote integration of 3xPP7 in Tsix. Successful insertion in Clones 1 and 2, evidenced by 97 bp shift of PCR product. Representative result from 3 biological replicates shown. b, Schematic of Southern blot to validate PP7 integration. c, Southern blot analysis of Clones 1 and 2. PP7 probe detects two bands in each clone, reflecting variations in DXPas34 repeat length. ES clones are a Mus/Cas hybrid. Mus repeat is longer. A representative result is shown from 3 biological replicates shown. Unprocessed blots are provided in Source data Extended Data Fig. 1. d, Clone 2 ImmunoFISH shows recruitment of PP7cp-BirA* (cyan) to tagged Tsix RNA (red). Bar: 5 μm. Among the 79 cells examined from one representative replicate, 90% showed colocalized foci. Three independent replicates showed similar results. e, BioRBP application to negative control, Tsix 3’ end. Position of homozygous 3xPP7 insertion is indicated. f, PCR-screening for homozygous integration of 3xPP7 in Tsix 3’ end. Successful insertion in Clone 3, evidenced by 97 bp shift of PCR product. Representative result from 3 biological replicates shown.

Source data

Extended Data Fig. 2 DCP1A interacts with Tsix RNA and resolves X-X pairs.

a, PCR-screening for homozygous integration of AviTag-FLAG at N-terminus of endogenous Dcp1a by CRISPR/Cas9. Successful insertion in Clones F2 and D11, as evidenced by a 99 bp shift of 200 bp WT PCR product. Clones validated by Sanger sequencing and Western blot analysis. Representative result from 3 biological replicates shown. b, Second representative image for immunoFISH experiments shown in Fig. 1i. One of 4 independent replicates shown. c, Western analysis of transient DCP1A knockdown by siRNA in undifferentiated ES cells. RT-qPCR showed 30% residual DCP1A. OCT4 and histone H3 levels are shown. Scr kd: scramble control. Representative result from 3 independent experiments shown. See also Source Data Supplementary Figure 5. d, Fgf5 mRNA levels upon DCP1A knockdown in days 0 and 3 cells. Values normalized to Gapdh RNA at day 0 in Scr kd cells. Mean and s.e. indicated. n=3 biological replicates. e,f, X-X pairing analysis by DNA FISH after DCP1A vs scramble knockdown. Biological replicate #2 for analysis in Fig. 2b,c. A total of three biological replicates was performed with similar results. Whole distributions (e) and cumulative frequencies (f) of inter-Tsix distances shown. Average distances \(\left( {{\bar{\mathrm X}}} \right)\) and p-value (KS-test, two-tailed) are indicated. N, sample size. A representative image with paired and unpaired X-chromosomes is shown. Bar: 5 μm. Statistical source data and unprocessed blots are provided in Source data Extended Data Fig. 2.

Source data

Extended Data Fig. 3 Dcp1a knockout results in persistent X-X pairing and impair Xist upregulation.

a, DCP1A ORF alignment from Sanger sequencing of parental and the two knockout (KO) clones C17 and J15. CRISPR/Cas9 transfection resulted in a short 7 base pairs deletion in both clones and a premature stop codon after DCP1A amino acid 14 (shown in red: stop). b, Western blot analysis confirms complete disappearance of DCP1A protein in both C17 and J15 KO clones. Data shown represent three independent experiments. c–f, X-X pairing analysis by DNA FISH upon DCP1A knockout (DCP1A -/-) vs parental. Biological replicate for the analysis shown in Fig. 2e,f, using DCP1A-KO clone C17. Whole distribution and cumulative frequencies of inter-Tsix distances for differentiation day 2 (c, d) and day 3 (e, f) are shown. Average distances \(\left( {{\bar{\mathrm X}}} \right)\) and p-value (KS-test, two-tailed) are indicated. N=number of analyzed nuclei for each condition in this replicate experiment. In total, the pairing analysis was performed in two biological replicates, two separate clones: KO clones J15 and C17. (g) RNA FISH showing blunted Xist upregulation in day 4 DCP1A-depleted cells. Xist RNA, red. Nuclei, DAPI (blue). Quantification in Fig. 2i. Representative result from 2 independent experiments shown. (h) Impaired Xist expression was not caused by failed ES differentiation. mRNA levels of indicated genes in day 0 and differentiation day 3/4 female ES cells upon DCP1A knockdown. Values normalized to day 0 scramble-treated cells using Gapdh level. Mean and s.e. are indicated, n=3 biological replicates.

Source data

Extended Data Fig. 4 Allele-specific RNA tagging and ablation establish essential nature of the antisense RNA without interfering with POL-II transcription.

a, Schematic of 3xPP7 (mus allele) and 3xMS2 (cas allele) insertions into Tsix. CRISPR/Cas9 targeted mus-Tsix first. PCR primers for clone screening is indicated (Primers 1 and 2), along with XcmI restriction site. b, PCR-screening showing three positive heterozygous clones for 3xPP7 mus-Tsix insertion. Representative result from 3 independent experiments shown. c, PCR-screening for cas-Tsix insertion of 3xMS2 in C11 clone identified in (b). Positive clones E20 (Clone B) and P20 (Clone A) shown. Representative result from 3 independent experiments shown. d, XcmI digestion confirms the insertion of 3xPP7 (390 bp, mus) and 3xMS2 (digestion pattern: 120+252 bp, cas) into clones E20 and P20. Representative result from 3 independent experiments shown. (e) Allele-specific Tsix RNA levels 6 hours post-LNA nucleofection for independent Clone B. Description as in Fig. 3b. f, Allele-specific Xist RNA level analysis upon Tsix knockdown shown in panel (a) and 24h post nucleofection. Normalized to scramble control. g, Allele-specific Tsix RNA levels 1 and 3 hours post-LNA nucleofection (Clone B). One LNA targeting Tsix mus (PP7) and two LNAs targeting cas (MS2) were used. Normalized to scramble control. h, Allele-specific Xist RNA levels upon Tsix knockdown show a rapid and stable Xist induction at 1 and 3 hours post-nucleofection of Clone B. Xist upregulation is maintained 48-72 hours post-nucleofection. Normalized to scramble control. i, Quantification of Xist RNA clouds upon Tsix knockdown for the analysis in Fig. 3d. Number of nuclei (n) scored across two independent experiments for each clone as shown. In total, 4 biological replicates have been done for this assay with two independent experiments performed for each clone. j, Allele-specific ChIP-qPCR for POL-II-S2- and -S5 phosphorylated isoforms at indicated positions. Negative control IgG pulldown also shown. PCR using primers upstream of LNA-targeted region (Tsix E3). An intergenic region served as negative control (Xneg). Mean and s.e. are indicated, n=3 independent replicates.

Source data

Extended Data Fig. 5 Persistent X-X pairing upon DCP1A depletion and rescue through targeted Tsix degradation.

a, Complete panels for allele-specific Tsix RNA FISH in Clones A and B and parental cell line. See Fig. 4a,b for details. Bar: 5 μm. Representative result from 3 independent experiments for each. b,c, Biological replicate of X-X pairing assayed by RNA FISH upon DCP1A vs scramble (Scr) knockdown. Whole distributions (b) and cumulative frequencies (c) of inter-Tsix distances are shown for Clone A. Average distances \(\left( {{\bar{\mathrm X}}} \right)\) and p-value (KS-test, two-tailed) are indicated. N=sample size. Representative result from 3 independent experiments. d,e, X-X pairing rescue experiment. Pairing assayed by RNA FISH. Biological replicate #2 of experiment described in Fig. 4e–g. See Fig. 4e–g legend for details. Representative result from 3 independent experiments. f,g, X-X pairing rescue experiment, as outlined in Fig. 4e. Pairing assayed by DNA FISH. Biological replicate #1. h,i, Biological replicate #2 for the X-X pairing rescue experiment, as outlined in Fig. 4e–h. X-X pairing analysis by DNA FISH upon DCP1A knockdown and mus Tsix RNA knockdown. Whole distributions (h) and cumulative frequencies (i) of inter-Tsix distances are shown. P-value (KS-test, two-tailed, comparing siDCP1A + ScrLNA and siDCP1A + TsixLNA) is indicated. n=number of nuclei scored for each sample. j, Allele-specific Xist RNA level analysis during concurrent DCP1A and scramble/Tsix knockdown for the experiment in (h, i). Averages from Biological replicate #2 shown. A total of three biological replicates showed similar findings. See Fig. 4h for Biological replicate #1. Statistical source data and unprocessed blots are provided in Source data Extended Data Fig. 5.

Source data

Extended Data Fig. 6 Evidence against the Stochastic Model for allelic choice.

a, Time-course analysis of XCI establishment during peri-implantation stages of mouse embryonic development demonstrates XCI taking place during 24h time-window (From E5.5 to E6.5). H3K27me3 (Xi marker) and DAPI staining shown. Epi: epiblast. Bar: 50 μm. Representative results shown from 4 independent female embryos of each stage showed similar results. b, XCI establishment results in random activation of one of two X-chromosomes. Schematic of possible outcomes for the mouse cross between a male carrying a Tsix deletion and a wildtype female, resulting empirically in skewed inactivation of Tsix-deleted paternal allele. Two possible mechanisms by which the non-random pattern could arise are shown. Model 1 (Deterministic): Tsix controls X-chromosome choice for inactivation. Model 2: Tsix does not directly control choice but solely prevents inactivation of the second X-chromosome. M, maternal X; P, paternal X.

Extended Data Fig. 7 XTetOXTetO /TetR-EGFP-LaminB1 “tethering” system is not suitable to test pairing’s effect on XCI.

a, Nuclear periphery localization of stably expressed TetR-EGFP-LaminB1 fusion proteins. Bar: 5 μm. One replicate of two shown. b, Whole distributions of inter-Xic allelic differences in untethered (+Dox) versus tethered (-Dox) conditions during cell differentiation using adherent growth conditions. Χ, Average distances. P-values (KS test, two-tailed) determined significance of the difference between day 0 versus days 1-4 timepoints. Sample size (n) = number of cells counted for each timepoint in one biological replicate. Two biological replicates for adherent growth showed similar results. Two additional biological replicates using the suspension growth method also showed similar results (panels g-i below). c, Cumulative frequencies from 0.0 to 0.2 uM distance for the experiment shown in (b). P, two-tailed Fisher’s exact test comparing differences between day 0 versus days 1-4, for the distribution between 0-2 uM. d, Cell clumping due to adherent growth conditions for the experiments shown in (b, c). Two replicates showed similar clumping. Xist RNA (red). Nuclei, DAPI (blue). Bar: 5 μm. e, Xist RNA FISH on different days of differentiation, with or without Dox treatment. 100 cells counted for each sample. f, Alternative growth conditions under suspension culture as embryoid bodies. Cells were dispersed prior to FISH analysis. Xist RNA (red). Nuclei, DAPI (blue). Bar: 5 μm. Sample size (n) = number of cells counted for each timepoint in one biological replicate. Two biological replicates for suspension growth showed similar results. Two additional biological replicates using the adherent growth method also showed similar results (panels b-e above). g, Whole distributions of inter-Xic allelic differences in untethered (+Dox) versus tethered (-Dox) conditions during cell differentiation for the experiment shown in f, Χ, average distance. P-values (KS test, two-tailed) determined significance of difference between day 0 versus day 1-4 timepoints. h, Cumulative frequencies from 0.0 to 0.2 uM distance. P, two-tailed Fisher’s exact test comparing differences between day 0 versus days 1-4, for the distribution between 0-2 uM. (i) Xist RNA FISH on different days of differentiation, +/-Dox treatment. 100 nuclei counted for each sample. Statistical source data are provided in Source data Extended Data Fig. 7.

Source data

Extended Data Fig. 8 DCP1A limits transcription pause-release of Tsix.

a, RNAseq analysis of Tsix population in wildtype (Parental) vs Dcp1a-/- clone J15 day 0 female ES cells. Blue track, difference in FPM between mutant and wildtype. FPM scales shown in brackets. b, Differential expression analysis by RNAseq comparing Dcp1a-/- clone C17 to Parental line. c, Differential expression analysis by RNAseq comparing Dcp1a-/- clone J15 to Parental line. No significant changes can be detected between clone C17 and J15. d, Shown at FPM scale of 0-30, PRO-seq analysis of Tsix transcription in Parental vs Dcp1a-/- clone C17 day 0 cells. Green track, difference in FPM between mutant and wildtype. Purple arrow, main POLII pause site. e, Shown at FPM scale of 0-330, PRO-seq analysis of Tsix transcription in Parental vs Dcp1a-/- clone C17 day 0 cells. Green track, difference in FPM between mutant and wildtype. Purple arrow, main POLII pause site. f, Genome-wide metagene analysis and heat map of PROseq: Dcp1a-/- versus wildtype parental cells. Signal ratio is shown with strand specificity. Transcription start site (TSS) and transcription termination site (TTS) +/- 1 kb were used with gene body size normalized to 5 kb. Two biological replicates showed similar results. g, Increase in genome-wide pausing is reproducible in two Dcp1a-/- clones. Box plots showing pausing index ratios between wildtype and Clone J15 are drawn with n=500 genes for each group. Top 500 genes showing increased pausing in Clone C17 are compared to two random sets of 500 genes. Upper whiskers are defined at 75 percentile (Q3) + 1.5 * Interquartile Range (IQR) and lower whiskers are defined at the minima or 25 percentile (Q1) +1.5 * IQR whichever is the larger, where IQR is defined as Q3-Q1. Values outside of the upper and lower whiskers are indicated as open circles. Statistical source data are provided in Source data Extended Data Fig. 8.

Source data

Extended Data Fig. 9 PROseq analysis show appropriate changes in pluripotency and early cell differentiation markers.

PROseq analysis of Eef1a1 a, Rex1 b, Nanog c, and Oct6 d, transcription in differentiating Tsix +/- female hybrid ES cells3. Undifferentiated ES cells (day 0) and differentiating cells (day 3 and day 7) are shown. Strand-specific analysis: Watson strand (+, red) and Crick strand (-, blue). Two biological replicates (Repli1, 2) are shown. Scale is indicated at top (same for all lanes of one gene).

Extended Data Fig. 10 DCP1 inhibits full-length elongation of Tsix transcript.

a, PROseq analysis of Tsix and Xist transcription in differentiating Tsix+/- female hybrid ES cells3. Undifferentiated ES cells (day 0) and differentiating cells (day 3 and day 7) are shown. Strand-specific analysis: Watson strand (+, red) and Crick strand (-, blue). Dashed line indicates region magnified in Extended Data Fig. 8d. Biological replicate 1. b, Shown at an FPM scale of 0-1250, PROseq analysis of Tsix and Xist transcription in differentiating Tsix+/- female hybrid ES cells. Undifferentiated ES cells (day 0) and differentiating cells (day 3 and day 7) are shown. Strand-specific analysis: Watson strand (+, red) and Crick strand (-, blue). Two biological replicates are shown. c, Shown at an FPM scale of 0-200, PROseq analysis of Tsix and Xist transcription in differentiating Tsix+/- female hybrid ES cells. Undifferentiated ES cells (day 0) and differentiating cells (day 3 and day 7) are shown. Strand-specific analysis: Watson strand (+, red) and Crick strand (-, blue). Two biological replicates are shown. d, PROseq analysis of Tsix and Xist transcription in differentiating day 7 Tsix+/- female hybrid ES cells. Allele-specific analysis: Xa (cas allele, light blue), Xi (mus allele, pink). Strand-specific analysis: Watson strand (+, Tsix) and Crick strand (-, Xist). Biological replicate 1. e, PROseq analysis of Tsix and Xist transcription in differentiating Tsix+/- female hybrid ES cells. Differentiating cells (day 3 and day 7) are shown. Allele-specific analysis: Xa (cas allele, light blue), Xi (mus allele, pink). Strand-specific analysis: Watson strand (+, Tsix) and Crick strand (-, Xist). Biological replicate 2.

Supplementary information

Reporting Summary

Supplementary Tables

Table 1: list of selected candidates identified to interact with Tsix RNA, applying BioRBP. Table 2: proteomics dataset identified to interact with Tsix RNA, applying BioRBP. Table 3: proteomics of negative control for Tsix RNA. Table 4: proteomics dataset with relative enrichment between Tsix BioRBP and negative control. Table 5: list and sequence of oligonucleotides used in the study.

Source data

Source Data Fig. 1

Unprocessed blots for Fig. 1.

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Unprocessed blots for Fig. 5.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 6

Unprocessed blots for Fig. 6.

Source Data Fig. 6

Statistical source data for Fig. 6.

Source Data Fig. 7

Unprocessed blots for Fig. 7.

Source Data Fig. 7

Statistical source data for Fig. 7.

Source Data Fig. 8

Statistical source data for Fig. 8.

Source Data Extended Data Fig. 1

Unprocessed blots for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Unprocessed blots for Extended Data Fig. 2.

Source Data Extended Data Fig. 2

Statistical source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Unprocessed blots for Extended Data Fig. 3.

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Statistical source data for Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Statistical source data for Extended Data Fig. 5.

Source Data Extended Data Fig. 7

Unprocessed blots for Extended Data Fig. 7.

Source Data Extended Data Fig. 7

Statistical source data for Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Statistical source data for Extended Data Fig. 8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aeby, E., Lee, HG., Lee, YW. et al. Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nat Cell Biol 22, 1116–1129 (2020). https://doi.org/10.1038/s41556-020-0558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0558-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing