Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function

Abstract

Owing to the prevalence and high mortality rates of cardiac diseases, a more detailed characterization of the human heart is necessary; however, this has been largely impeded by the cellular diversity of cardiac tissue and limited access to samples. Here, we show transcriptome profiling of 21,422 single cells—including cardiomyocytes (CMs) and non-CMs (NCMs)—from normal, failed and partially recovered (left ventricular assist device treatment) adult human hearts. Comparative analysis of atrial and ventricular cells revealed pronounced inter- and intracompartmental CM heterogeneity as well as compartment-specific utilization of NCM cell types as major cell-communication hubs. Systematic analysis of cellular compositions and cell–cell interaction networks showed that CM contractility and metabolism are the most prominent aspects that are correlated with changes in heart function. We also uncovered active engagement of NCMs in regulating the behaviour of CMs, exemplified by ACKR1+-endothelial cells, injection of which preserved cardiac function after injury. Beyond serving as a rich resource, our study provides insights into cell-type-targeted intervention of heart diseases.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Overview of the cell composition of the normal adult human heart.
Fig. 2: Heterogeneity of inter- and intracompartmental CMs.
Fig. 3: AV CMs are present in both LV and LA normal human myocardium.
Fig. 4: Functional diversity and compartment-specific roles of NCM subtypes.
Fig. 5: Compartment- and aetiology-specific alterations of CMs in HF.
Fig. 6: The cellular basis of HF caused by coronary heart disease (cHF).
Fig. 7: Active engagement of NCMs in HF.
Fig. 8: Single-cell characterization of the recovery of cardiac function.

Similar content being viewed by others

Data availability

scRNA-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE109816 and GSE121893. All other data supporting the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Churko, J. M. et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat. Commun. 9, 4906 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Molenaar, B. & van Rooij, E. Single-cell sequencing of the mammalian heart. Circ. Res. 123, 1033–1035 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Hu, P. et al. Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts. Genes Dev. 32, 1344–1357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. DeLaughter, D. M. et al. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39, 480–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li, G. et al. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev. Cell 39, 491–507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. See, K. et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat. Commun. 8, 225 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma, Y., Mouton, A. J. & Lindsey, M. L. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl. Res. 191, 15–28 (2018).

    Article  PubMed  Google Scholar 

  13. Guo, G. R. et al. A modified method for isolation of human cardiomyocytes to model cardiac diseases. J. Transl. Med. 16, 288 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao, F. et al. Histone variant H2A.Z is required for the maintenance of smooth muscle cell identity as revealed by single-cell transcriptomics. Circulation 138, 2274–2288 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Hang, C. T. et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eriksson, M., Jokinen, E., Sistonen, L. & Leppa, S. Heat shock factor 2 is activated during mouse heart development. Int. J. Dev. Biol. 44, 471–477 (2000).

    CAS  PubMed  Google Scholar 

  18. Huang, C. Y. et al. p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure. Cell Death Dis. 8, e2990 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weng, Y. J. et al. E4BP4 is a cardiac survival factor and essential for embryonic heart development. Mol. Cell. Biochem. 340, 187–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Frieler, R. A. & Mortensen, R. M. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131, 1019–1030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kamo, T., Akazawa, H. & Komuro, I. Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ. Res. 117, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Dassanayaka, S. & Jones, S. P. Recent developments in heart failure. Circ. Res. 117, e58–e63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Towbin, J. A. & Bowles, N. E. The failing heart. Nature 415, 227–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Metra, M. & Teerlink, J. R. Heart failure. Lancet 390, 1981–1995 (2017).

    Article  PubMed  Google Scholar 

  25. Cook, S. A., Sugden, P. H. & Clerk, A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J. Mol. Cell. Cardiol. 31, 1429–1434 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, G. N. et al. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338, 1599–1603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glembotski, C. C. The role of the unfolded protein response in the heart. J. Mol. Cell. Cardiol. 44, 453–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Iyer, L. M. et al. A context-specific cardiac beta-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart. Nucleic Acids Res. 46, 2850–2867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lader, A. S., Kwiatkowski, D. J. & Cantiello, H. F. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am. J. Physiol. 277, C1277–C1283 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173, 1535–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wittrup, H. H., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation 99, 2901–2907 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fioret, B. A., Heimfeld, J. D., Paik, D. T. & Hatzopoulos, A. K. Endothelial cells contribute to generation of adult ventricular myocytes during cardiac homeostasis. Cell Rep. 8, 229–241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Q. et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 7, 12422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Condorelli, G. et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc. Natl Acad. Sci. USA 98, 10733–10738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gheorghiade, M. et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA 314, 2251–2262 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Mancini, D. & Colombo, P. C. Left ventricular assist devices: a rapidly evolving alternative to transplant. J. Am. Coll. Cardiol. 65, 2542–2555 (2015).

    Article  PubMed  Google Scholar 

  40. Yuan, X. et al. THO complex-dependent posttranscriptional control contributes to vascular smooth muscle cell fate decision. Circ. Res. 123, 538–549 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, L. et al. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 13, 676–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wasmuth, E. V. & Lima, C. D. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res. 45, 846–860 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFC1300900 and 2017YFA0103700), the CAMS Initiative for Innovative Medicine (2017-I2M-1-003, 2018-I2M-3-002 and 2016-I2M-1-015) and the National Natural Science Foundation of China (grant numbers 91639107, 31671542 and 81722006 to L.W.; 81700337 to B.Z.).

Author information

Authors and Affiliations

Authors

Contributions

L.W., B.Z., J.S. and S.H. designed the experiments. B.Z., G.G., Y.W. and J.S. isolated cells for scRNA-seq. Z.L., Y.W. and X.C. performed immunostaining. L.W. and Z.L. performed scRNA-seq library generation and sequencing. M.Z. performed animal experiments. P.Y. and L.H. performed bioinformatics analyses. L.W., P.Y., B.Z. and S.H. interpreted data. L.W., B.Z. and S.H. wrote the manuscript.

Corresponding authors

Correspondence to Li Wang or Shengshou Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quality metrics and marker gene expression in single cells of the normal adult human heart.

a-c, Quality metrics for single-cell RNA-Seq data showing distributions of number of reads per cell (a), alignment rate per cell (b), and number of genes detected per cell (c). d, Gene expression of specific markers in a designated cell type (the mean logTPM of known markers). e, Correlation between detected and expected ERCC (spike-in) RNAs. Each dot represents one spike-in RNA.

Extended Data Fig. 2 Donor contribution to cell clustering and comparison between left and right ventricles.

a, Contribution of each individual donor to each cell cluster. Each color represents a donor. b, t-SNE clustering of CMs isolated from both LV and LA of the same donor (N13 and N14). c, Donor information and numbers of cells from the right ventricles sequenced via single-cell RNA-Seq. d,e, t-SNE clustering of CMs isolated from both left ventricle (LV) and right ventricle (RV) marked by tissue source (d) or cluster number (e). f, Heatmap showing DEGs between LV-CMs and LA-CMs. g, Selected top KEGG categories of DEGs in LV-CMs and RV-CMs.

Extended Data Fig. 3 Aging trajectory of CMs from left atria and left ventricles.

a,b, Monocle analyses showing the ordering of CMs from LA (a) or LV (b) along pseudotime trajectories. CMs are color-labeled by donor age. c, Heatmap of different blocks of DEGs along the pseudotime trajectory of LV-CMs (b). Right, representative genes in each gene cluster. d, Selected top KEGG terms related to corresponding DEGs in c.

Extended Data Fig. 4 Characterization of CM subtypes in left ventricle and left atria.

a,c, Heatmaps showing differentially expressed genes (DEGs) among CM subclusters in LA (a) and LV (c). Right: representative genes in each subcluster. For numerical source data, see Source Data Extended Data Fig. 4. b,d, Selected top GO enrichment categories of DEGs in a and c. e, Heatmap to show regulon activities of top factors in LA-CMs, LV-CMs, and AV-CMs, respectively. f, Scatter plots to show the expression changes of representative genes in the HSF2 regulon or NFIL3 regulon in LA-CMs versus LV-CMs, respectively. The blue line is the smoothed mean line by LOESS method and the grey shade represents 95% confidence interval. g, Box plots to show the expression levels of DOCK6 and SMARCA4 in AV-CMs, LA-CMs, and LV-CMs. Each box represents the median and the lower and upper quantiles, and the whiskers indicate 1.5 times of the interquartile range. LA: n=1630 cells, LV: n=1706 cells, AV: n=558 cells.

Source data

Extended Data Fig. 5 Characterization of CM subtypes in left ventricle and left atria.

a,b, t-SNE clustering of all MPs, FBs, and SMCs identified in Fig. 1c based on their marker genes. Cells are color-labeled by subcluster (a) or tissue source (b). c, Contribution of each individual donor to each cell cluster.

Extended Data Fig. 6 Putative cell-cell interactions in LA and LV.

a,b, Statistical analysis of cell-cell communication counts in each cell type based on the putative ligand-receptor interactions in LA (a) or LV (b). c,d, Statistical analysis of counts of ligand usage in LA (c) or LV(d) in their interaction with other cell types. Top 10 are shown. e,f, Statistical analysis of counts of receptor usage in LA (e) or LV (f) in their interactions with other cell types, respectively. Top 10 are shown. For numerical source data, see Source Data Extended Data Fig. 6.

Source data

Extended Data Fig. 7 Alterations of cardiomyocytes in heart failure.

a, Donor information and numbers of cells sequenced via single-cell RNA-Seq. b-d, Quality metrics for single-cell RNA-Seq data showing distributions of number of reads per cell (b), alignment rate per cell (c), and number of genes detected per cell (d). e,f, Monocle analyses showing the ordering of CMs along pseudotime marked by heart condition (e) or CM subcluster (f).

Extended Data Fig. 8 Compartment- and aetiology-specific alterations of cardiomyocytes in heart failure.

a,b, Monocle analyses showing the ordering of CMs along pseudotime marked by heart condition (a) or CM state (b). c, Distribution of CMs from different heart conditions (N_CM, cHF_CM, and dHF_CM) in each defined CM state (Normal, cHF, dHF) based on a. d, Heatmap of different blocks of DEGs along the pseudotime trajectory. Right, representative genes in each gene cluster. For numerical source data, see Source Data Extended Data Fig. 8. e, Selected top GO terms related to corresponding DEGs in d. f-h, Co-staining of ACTN2 and S100A6 (f), DKK3 (g), or ROCK (h) in heart sections from normal, cHF and dHF hearts, respectively. Scale bar = 25 μm. Data are representative of 6 independent experiments yielding similar results. i, Regulon activities of NR1H2, KLF4, XBP1, CREB5, EGR1, and JUN, in normal, cHF, and dHF. Each box represents the median and the lower and upper quantiles, and the whiskers indicate 1.5 times of the interquartile range. Normal LV: n=400 cells, cHF_LV: n=429 cells and dHF_LV: n=305 cells. Two-tailed Wilcoxon rank sum test was used.

Source data

Extended Data Fig. 9 Cellular basis of heart failure caused by dilated cardiomyopathy (dHF).

a, Ratio changes of cell clusters in dHF versus normal heart. Only cell clusters with ratio changes above the median number are shown. b, Correlation analysis of potentially matched pairs between the ligands secreted by changed cell clusters (a) and enriched biological behaviors of CMs in dHF. c, Heatmap displaying the expression of genes indicated in correlation analysis (b) across changed cell clusters (a). For numerical source data, see Source Data Extended Data Fig. 9. d, Sum of all matched ligands (c) expressed in different cell clusters.

Source data

Extended Data Fig. 10 Contributions of non-cardiomyocytes (NCMs) in heart failure.

a-d, Ratio changes of cell subclusters in major cell types, including FB (a), EC (b), MP (c), and SMC (d), in normal versus failed hearts. Only cell clusters with ratio changes above the median are shown. e,f, Statistical analysis of ligand (e) or receptor (f) usage based on the putative ligand-receptor interactions (Fig. 7b). Top 10 are shown. For numerical source data, see Source Data Extended Data Fig. 10. g, Violin plot displaying transcriptome similarities among different cell types in the normal heart. A boxplot is shown on the inside (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; n = 7,495 cells). h, Gating strategy of flow cytometry. P1: all sorted ECs; P2: ACKR1--ECs; P3: ACKR1+-ECs.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Healthy donor information.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Source Data Fig. 7

Statistical source data

Source Data Fig. 8

Statistical source data

Source Data Extended Data Fig. 4

Statistical source data

Source Data Extended Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 8

Statistical source data

Source Data Extended Data Fig. 9

Statistical source data

Source Data Extended Data Fig. 10

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, P., Zhou, B. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 22, 108–119 (2020). https://doi.org/10.1038/s41556-019-0446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0446-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing