Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA modifications regulating cell fate in cancer

The deposition of chemical modifications into RNA is a crucial regulator of temporal and spatial gene expression programs during development. Accordingly, altered RNA modification patterns are widely linked to developmental diseases. Recently, the dysregulation of RNA modification pathways also emerged as a contributor to cancer. By modulating cell survival, differentiation, migration and drug resistance, RNA modifications add another regulatory layer of complexity to most aspects of tumourigenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: RNA modifications and their writer proteins.
Fig. 2: RNA modifications regulate gene expression programs.
Fig. 3: Roles of RNA modifications in cancer.

References

  1. 1.

    Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    CAS  PubMed  Google Scholar 

  2. 2.

    Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 17, 365–372 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Dominissini, D. et al. The dynamic N 1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. Visualization of chemical modifications in the human 80S ribosome structure. Nature 551, 472–477 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosomebiogenesis and function. RNA Biol. 14, 1138–1152 (2017).

    PubMed  Google Scholar 

  9. 9.

    Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rich, A. & RajBhandary, U. L. Transfer RNA: molecular structure, sequence, and properties. Annu. Rev. Biochem. 45, 805–860 (1976).

    CAS  PubMed  Google Scholar 

  11. 11.

    Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45–58 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Adams, J. M. & Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255, 28–33 (1975).

    CAS  PubMed  Google Scholar 

  13. 13.

    Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    CAS  PubMed  Google Scholar 

  14. 14.

    Dubin, D. T. & Taylor, R. H. The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res. 2, 1653–1668 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Perry, R. P., Kelley, D. E., Friderici, K. & Rottman, F. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4, 387–394 (1975).

    CAS  PubMed  Google Scholar 

  16. 16.

    Schibler, U., Kelley, D. E. & Perry, R. P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115, 695–714 (1977).

    CAS  PubMed  Google Scholar 

  17. 17.

    Wei, C. M., Gershowitz, A. & Moss, B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4, 379–386 (1975).

    CAS  PubMed  Google Scholar 

  18. 18.

    Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005.e1009 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Delatte, B. et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yang, X. et al. 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363, eaav0080 (2019).

    PubMed  Google Scholar 

  26. 26.

    Rintala-Dempsey, A. C. & Kothe, U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 14, 1185–1196 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bokar, J. A., Rath-Shambaugh, M. E., Ludwiczak, R., Narayan, P. & Rottman, F. Characterization and partial purification of mRNA N 6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704 (1994).

    CAS  PubMed  Google Scholar 

  29. 29.

    Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 31, 990–1006 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bertero, A. et al. The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555, 256–259 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Aguilo, F. et al. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17, 689–704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

    CAS  PubMed  Google Scholar 

  34. 34.

    Jia, G. et al. N 6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Wang, X. et al. N 6-Methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed  Google Scholar 

  37. 37.

    Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ivanova, I. et al. The RNA m6A Reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067.e1054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Shi, H. et al. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wang, X. et al. N 6-Methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Bailey, A. S. et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 6, e26116 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Huang, H. et al. Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Yang, Y., Hsu, P. J., Chen, Y.-S. & Yang, Y.-G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Patil, D. P., Pickering, B. F. & Jaffrey, S. R. Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28, 113–127 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N 6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Buszczak, M., Signer, R. A. & Morrison, S. J. Cellular differences in protein synthesis regulate tissue homeostasis. Cell 159, 242–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R.J. Translational control in cancer. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a032896 (2018).

  51. 51.

    Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281–1292 (2014).

    CAS  PubMed  Google Scholar 

  54. 54.

    Kuhn, C. D. RNA versatility governs tRNA function: why tRNA flexibility is essential beyond the translation cycle. BioEssays 38, 465–473 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Schaffrath, R. & Leidel, S. A. Wobble uridine modifications-a reason to live, a reason to die?! RNA Biol. 14, 1209–1222 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Chan, C. T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Rezgui, V. A. N. et al. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc. Natl Acad. Sci. USA 110, 12289–12294 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Ranjan, N. & Rodnina, M. V. tRNA wobble modifications and protein homeostasis. Translation (Austin) 4, e1143076 (2016).

    Google Scholar 

  60. 60.

    Rapino, F., Delaunay, S., Zhou, Z., Chariot, A. & Close, P. tRNA modification: is cancer having a wobble? Trends Cancer 3, 249–252 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Nedialkova, D. D. & Leidel, S. A. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell 161, 1606–1618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zinshteyn, B. & Gilbert, W. V. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet. 9, e1003675 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Blanco, S. et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 33, 2020–2039 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Van Haute, L. et al. Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patientcarrying mutations in NSUN3. Nat. Commun. 7, 12039 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Nakano, S. et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. Nat. Chem. Biol. 12, 546–551 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Haag, S. et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 35, 2104–2119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kawarada, L. et al. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 45, 7401–7415 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Thiaville, P. C. et al. Global translational impacts of the loss of the tRNA modification t6A in yeast. Microb. Cell 3, 29–45 (2016).

    CAS  PubMed  Google Scholar 

  69. 69.

    Tuorto, F. et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 34, 2350–2362 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Tuorto, F. et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 37, e99777 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Frye, M. & Blanco, S. Post-transcriptional modifications in development and stem cells. Development 143, 3871–3881 (2016).

    CAS  PubMed  Google Scholar 

  72. 72.

    Guzzi, N. et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204–1216.e26 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wang, X. et al. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA 24, 1305–1313 (2018).

    CAS  PubMed  Google Scholar 

  75. 75.

    Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases. Trends Mol. Med. 20, 306–314 (2014).

    CAS  PubMed  Google Scholar 

  76. 76.

    Dai, D., Wang, H., Zhu, L., Jin, H. & Wang, X. N 6-Methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9, 124 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    CAS  PubMed  Google Scholar 

  79. 79.

    Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase.Cancer Cell 31, 127–141 (2017).

    PubMed  Google Scholar 

  80. 80.

    Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Zhang, S. et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606.e596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Vu, L. P. et al. The N 6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Chen, M. et al. RNA N 6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270 (2018).

    CAS  PubMed  Google Scholar 

  84. 84.

    Weng, H. et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22, 191–205.e9 (2018).

    CAS  PubMed  Google Scholar 

  85. 85.

    Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105.e123 (2018).

    CAS  PubMed  Google Scholar 

  86. 86.

    Liu, J. et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Rapino, F. et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605–609 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Delaunay, S. et al. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J. Exp. Med. 213, 2503–2523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Begley, U. et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol. Med. 5, 366–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Ladang, A. et al. Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. J. Exp. Med. 212, 2057–2075 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Close, P. et al. DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J. Biol. Chem. 287, 32535–32545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    PubMed  Google Scholar 

  93. 93.

    Larsimont, J. C. et al. Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell 17, 60–73 (2015).

    CAS  PubMed  Google Scholar 

  94. 94.

    Laguesse, S. et al. A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev. Cell 35, 553–567 (2015).

    CAS  PubMed  Google Scholar 

  95. 95.

    Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136, 551–564 (2009).

    CAS  PubMed  Google Scholar 

  96. 96.

    Kojic, M. et al. Elongator mutation in mice induces neurodegeneration and ataxia-like behavior. Nat. Commun. 9, 3195 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Abbasi-Moheb, L. et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 847–855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Khan, M. A. et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am. J. Hum. Genet. 90, 856–863 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Martinez, F. J. et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J. Med. Genet. 49, 380–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Frye, M. et al. Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer. Cancer Lett. 289, 71–80 (2010).

    CAS  PubMed  Google Scholar 

  101. 101.

    Lu, L., Zhu, G., Zeng, H., Xu, Q. & Holzmann, K. High tRNA transferase NSUN2 gene expression is associated with poor prognosis in head and neck squamous carcinoma. Cancer Invest. 36, 246–253 (2018).

    CAS  PubMed  Google Scholar 

  102. 102.

    Signer, R. A., Magee, J. A., Salic, A. & Morrison, S. J. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Signer, R. A. et al. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. Genes Dev. 30, 1698–1703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Llorens-Bobadilla, E. et al. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340 (2015).

    CAS  PubMed  Google Scholar 

  105. 105.

    Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

    CAS  PubMed  Google Scholar 

  106. 106.

    Wek, R. C., Jiang, H. Y. & Anthony, T. G. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006).

    CAS  PubMed  Google Scholar 

  107. 107.

    Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Huang, W. et al. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal. Chem. 88, 1378–1384 (2016).

    CAS  PubMed  Google Scholar 

  110. 110.

    Zhang, C. et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. USA 113, E2047–E2056 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotestranslation in human cancer cells. Mol. Cell 62, 335–345 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Deng, X. et al. RNA N 6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 28, 507–517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Popis, M. C., Blanco, S. & Frye, M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Curr. Opin. Oncol. 28, 65–71 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Dachs, G. U. & Tozer, G. M. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur. J. Cancer 36, 1649–1660 (2000).

    CAS  PubMed  Google Scholar 

  115. 115.

    Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175–180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Chionh, Y. H. et al. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat. Commun. 7, 13302 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Flores, J. V. et al. Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Reports 8, 112–124 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Yi, J. et al. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 8, 20751–20765 (2017).

    PubMed  Google Scholar 

  119. 119.

    Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Choe, J. et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Ma, J. Z. et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N 6-methyladenosine-dependent primary MicroRNA processing. Hepatology 65, 529–543 (2017).

    CAS  PubMed  Google Scholar 

  122. 122.

    Alarcón, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N 6-Methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Okamoto, M. et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 10, e1004639 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).

    CAS  PubMed  Google Scholar 

  126. 126.

    Blanco, S. et al. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 7, e1002403 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    CAS  PubMed  Google Scholar 

  129. 129.

    Rubio, M. A. et al. Editing and methylation at a single site by functionally interdependent activities. Nature 542, 494–497 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Björk, G. R. et al. Transfer RNA modification. Annu. Rev. Biochem. 56, 263–287 (1987).

    PubMed  Google Scholar 

Download references

Acknowledgements

M.F. is supported by a Cancer Research UK Senior Fellowship (C10701/A15181), the European Research Council (ERC; 310360), and the Medical Research Council UK (MR/M01939X/1). S.D. is funded by an EMBO Long-Term Fellowship. Part of this work was carried out in the framework of the European COST action EPITRAN 16120.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michaela Frye.

Ethics declarations

Competing interests

M.F. consults for STORM Therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delaunay, S., Frye, M. RNA modifications regulating cell fate in cancer. Nat Cell Biol 21, 552–559 (2019). https://doi.org/10.1038/s41556-019-0319-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing