Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Membrane trafficking

How membrane physics rules the HIV envelope

HIV particles incorporate host membrane proteins into their envelope to evade the immune system and infect other cells. A study now shows that Gag assembly on the host cell membrane produces a raft-like nanodomain favourable for protein partitioning due to a transbilayer coupling mechanism assisted by long saturated chain lipids and cholesterol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of transbilayer coupling during HIV budding.
Fig. 2: Scheme of cellular processes that might require transbilayer coupling (marked in brown).

References

  1. Burnie, J. & Guzzo, C. Viruses 11, 85 (2019).

    Article  Google Scholar 

  2. Sengupta, P. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0300-y (2019).

    Article  Google Scholar 

  3. Lorizate, M. et al. Cell. Microbiol. 15, 292–304 (2013).

    Article  CAS  Google Scholar 

  4. Valentine, K. G. et al. Structure 18, 9–16 (2010).

    Article  CAS  Google Scholar 

  5. Raghupathy, R. et al. Cell 161, 581–594 (2015).

    Article  CAS  Google Scholar 

  6. Favard, C. et al. bioRxiv https://doi.org/10.1101/556308 (2019).

  7. Lorent, J. H. et al. Nat. Commun. 8, 1219 (2017).

    Article  Google Scholar 

  8. Bissig, C. & Gruenberg, J. Cold Spring Harb. Perspect. Biol. 5, a016816 (2013).

    Article  Google Scholar 

  9. Subra, C., Laulagnier, K., Perret, B. & Record, M. Biochimie 89, 205–212 (2007).

    Article  CAS  Google Scholar 

  10. Sorre, B. et al. Proc. Natl Acad. Sci. USA 106, 5622–5626 (2009).

    Article  CAS  Google Scholar 

  11. van Meer, G., Voelker, D. R. & Feigenson, G. W. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  Google Scholar 

  12. Lakshminarayan, R. et al. Nat. Cell Biol. 16, 592–603 (2014).

    Article  Google Scholar 

  13. Blouin, C. M. et al. Cell 166, 920–934 (2016).

    Article  CAS  Google Scholar 

  14. Frank, I. et al. AIDS 10, 1611–1620 (1996).

    Article  CAS  Google Scholar 

  15. Bassereau, P. et al. J. Phys. D Appl. Phys. 51, 343001 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Bassereau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podkalicka, J., Bassereau, P. How membrane physics rules the HIV envelope. Nat Cell Biol 21, 413–415 (2019). https://doi.org/10.1038/s41556-019-0312-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0312-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing