Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular functions of long noncoding RNAs

Abstract

A diverse catalog of long noncoding RNAs (lncRNAs), which lack protein-coding potential, are transcribed from the mammalian genome. They are emerging as important regulators in gene expression networks by controlling nuclear architecture and transcription in the nucleus and by modulating mRNA stability, translation and post-translational modifications in the cytoplasm. In this Review, we highlight recent progress in cellular functions of lncRNAs at the molecular level in mammalian cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The diversity of lncRNAs in mammalian cells.
Fig. 2: Cellular functions of lncRNAs.

References

  1. 1.

    Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Google Scholar 

  4. 4.

    Wilusz, J. E., Freier, S. M. & Spector, D. L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sunwoo, H. et al. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347–359 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yin, Q. F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell 48, 219–230 (2012).

    CAS  PubMed  Google Scholar 

  7. 7.

    Wu, H. et al. Unusual processing generates SPA lncRNAs that sequester multiple RNA binding proteins. Mol. Cell 64, 534–548 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Xing, Y. H. et al. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169, 664–678.e616 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).

    CAS  PubMed  Google Scholar 

  12. 12.

    Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207–223 (2016).

    CAS  Google Scholar 

  13. 13.

    Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol. 20, 923–928 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lam, M. T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Anderson, K. M. et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 539, 433–436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412.e1322 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Melé, M. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 27, 27–37 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Schlackow, M. et al. Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol. Cell 65, 25–38 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang, B. et al. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol. Cell. Biol. 34, 2318–2329 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Shukla, C. J. et al. High-throughput identification of RNA nuclear enrichment sequences. EMBO J. 37, e98452 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lubelsky, Y. & Ulitsky, I. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555, 107–111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e1037 (2018).

    CAS  Google Scholar 

  29. 29.

    Pombo, A. & Dillon, N. Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Hall, L. L. & Lawrence, J. B. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome. Cold Spring Harb. Symp. Quant. Biol. 75, 345–356 (2010).

    CAS  PubMed  Google Scholar 

  31. 31.

    Jégu, T., Aeby, E. & Lee, J. T. The X chromosome in space. Nat. Rev. Genet. 18, 377–389 (2017).

    PubMed  Google Scholar 

  32. 32.

    Creamer, K. M. & Lawrence, J. B. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Phil. Trans. R. Soc. Lond. B 372, 20160360 (2017).

    Google Scholar 

  33. 33.

    Zhang, L. F., Huynh, K. D. & Lee, J. T. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693–706 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015).

    Google Scholar 

  35. 35.

    Chen, C. K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    CAS  Google Scholar 

  36. 36.

    McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang, C. Y., Froberg, J. E., Blum, R., Jeon, Y. & Lee, J. T. Comment on “Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing”. Science 356, eaal4976 (2017).

    PubMed  Google Scholar 

  38. 38.

    Hall, L. L. et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156, 907–919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Xiang, J. F. et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc. Natl Acad. Sci. USA 113, E2029–E2038 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Sunwoo, H., Colognori, D., Froberg, J. E., Jeon, Y. & Lee, J. T. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl Acad. Sci. USA 114, 10654–10659 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cerase, A. et al. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc. Natl Acad. Sci. USA 111, 2235–2240 (2014).

    CAS  Google Scholar 

  46. 46.

    Sunwoo, H., Wu, J. Y. & Lee, J. T. The Xist RNA-PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc. Natl Acad. Sci. USA 112, E4216–E4225 (2015).

    CAS  PubMed  Google Scholar 

  47. 47.

    Almeida, M. et al. PCGF3/5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084 (2017).

    CAS  Google Scholar 

  48. 48.

    Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep 5, 3–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Amândio, A. R., Necsulea, A., Joye, E., Mascrez, B. & Duboule, D. Hotair is dispensible for mouse development. PLoS Genet. 12, e1006232 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Lai, K. M. et al. Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated lincRNAs. PLoS One 10, e0125522 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Portoso, M. et al. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J. 36, 981–994 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mili, S. & Steitz, J. A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Jain, A. K. et al. LncPRESS1 is a p53-regulated lncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol. Cell 64, 967–981 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015).

    CAS  PubMed  Google Scholar 

  59. 59.

    Boque-Sastre, R. et al. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl Acad. Sci. USA 112, 5785–5790 (2015).

    CAS  PubMed  Google Scholar 

  60. 60.

    Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    CAS  PubMed  Google Scholar 

  61. 61.

    Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 (2017).

    CAS  PubMed  Google Scholar 

  62. 62.

    Marchese, F. P. et al. A long noncoding RNA regulates sister chromatid cohesion. Mol. Cell 63, 397–407 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mariner, P. D. et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29, 499–509 (2008).

    CAS  PubMed  Google Scholar 

  64. 64.

    Espinoza, C. A., Allen, T. A., Hieb, A. R., Kugel, J. F. & Goodrich, J. A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822–829 (2004).

    CAS  PubMed  Google Scholar 

  65. 65.

    Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    CAS  PubMed  Google Scholar 

  66. 66.

    Calo, E. et al. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–253 (2015).

    CAS  PubMed  Google Scholar 

  67. 67.

    Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    CAS  PubMed  Google Scholar 

  68. 68.

    Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    CAS  PubMed  Google Scholar 

  69. 69.

    Tseng, Y. Y. et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 512, 82–86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Staněk, D. & Fox, A. H. Nuclear bodies: news insights into structure and function. Curr. Opin. Cell Biol. 46, 94–101 (2017).

    PubMed  Google Scholar 

  71. 71.

    Chujo, T., Yamazaki, T. & Hirose, T. Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859, 139–146 (2016).

    CAS  PubMed  Google Scholar 

  72. 72.

    Hutchinson, J. N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467–478 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bond, C. S. & Fox, A. H. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186, 637–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Sasaki, Y. T., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl Acad. Sci. USA 106, 2525–2530 (2009).

    CAS  PubMed  Google Scholar 

  77. 77.

    Naganuma, T. et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020–4034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95–101 (2011).

    CAS  Google Scholar 

  79. 79.

    Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Wang, Y. et al. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20, 1145–1158 (2018).

    CAS  PubMed  Google Scholar 

  81. 81.

    Souquere, S., Beauclair, G., Harper, F., Fox, A. & Pierron, G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol. Biol. Cell 21, 4020–4027 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    West, J. A. et al. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol. 214, 817–830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Yamazaki, T. & Hirose, T. The building process of the functional paraspeckle with long non-coding RNAs. Front. Biosci. (Elite Ed.) 7, 1–41 (2015).

    Google Scholar 

  84. 84.

    Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 53, 393–406 (2014).

    CAS  PubMed  Google Scholar 

  85. 85.

    Jiang, L. et al. NEAT1 scaffolds RNA-binding proteins and the microprocessor to globally enhance pri-miRNA processing. Nat. Struct. Mol. Biol. 24, 816–824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Prasanth, K. V. et al. Regulating gene expression through RNA nuclear retention. Cell 123, 249–263 (2005).

    CAS  PubMed  Google Scholar 

  87. 87.

    Chen, L. L., DeCerbo, J. N. & Carmichael, G. G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Hu, S. B. et al. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev. 29, 630–645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Torres, M. et al. Circadian RNA expression elicited by 3'-UTR IRAlu-paraspeckle associated elements. ELfie 5, e14837 (2016).

    Google Scholar 

  90. 90.

    Adriaens, C. et al. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22, 861–868 (2016).

    CAS  PubMed  Google Scholar 

  91. 91.

    Mello, S. S. et al. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 31, 1095–1108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31–39 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Nakagawa, S. et al. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141, 4618–4627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Standaert, L. et al. The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20, 1844–1849 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Valgardsdottir, R. et al. Transcription of Satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res. 36, 423–434 (2008).

    CAS  PubMed  Google Scholar 

  96. 96.

    Mannen, T., Yamashita, S., Tomita, K., Goshima, N. & Hirose, T. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J. Cell Biol. 214, 45–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Caudron-Herger, M. et al. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 34, 2758–2774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Nakagawa, S. et al. Malat1 is not an essential component of nuclear speckles in mice. RNA 18, 1487–1499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Fei, J. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130, 4180–4192 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Änkö, M. L. et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol. 13, R17 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Latorre, E. et al. The ribonucleic complex HuR-MALAT1 represses CD133 expression and suppresses epithelial-mesenchymal transition in breast cancer. Cancer Res. 76, 2626–2636 (2016).

    CAS  PubMed  Google Scholar 

  105. 105.

    Ji, Q. et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer 111, 736–748 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Malakar, P. et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 77, 1155–1167 (2017).

    CAS  PubMed  Google Scholar 

  107. 107.

    Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114, 1389–1397 (2014).

    CAS  PubMed  Google Scholar 

  108. 108.

    Arun, G. et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 30, 34–51 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Engreitz, J. M. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159, 188–199 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Sun, Q., Hao, Q. & Prasanth, K. V. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet. 34, 142–157 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Sridhar, B. et al. Systematic mapping of RNA-chromatin interactions in vivo. Curr. Biol. 27, 602–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Bosson, A. D., Zamudio, J. R. & Sharp, P. A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56, 347–359 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  Google Scholar 

  119. 119.

    Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e317 (2018).

    CAS  PubMed  Google Scholar 

  120. 120.

    Kim, Y. K., Furic, L., Desgroseillers, L. & Maquat, L. E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    CAS  PubMed  Google Scholar 

  121. 121.

    Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470, 284–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Zamore, P. D., Williamson, J. R. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Miller, M. A. & Olivas, W. M. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip. Rev. RNA 2, 471–492 (2011).

    CAS  PubMed  Google Scholar 

  124. 124.

    Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).

    CAS  PubMed  Google Scholar 

  125. 125.

    Tichon, A. et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Munschauer, M. et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561, 132–136 (2018).

    CAS  PubMed  Google Scholar 

  127. 127.

    Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    CAS  PubMed  Google Scholar 

  131. 131.

    Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Liu, B. et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27, 370–381 (2015).

    CAS  PubMed  Google Scholar 

  133. 133.

    Gutschner, T., Baas, M. & Diederichs, S. Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. Genome Res. 21, 1944–1954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).

    Google Scholar 

  135. 135.

    Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Bester, A. C. et al. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173, 649–664.e620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e614 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Murigneux, V., Saulière, J., Roest Crollius, H. & Le Hir, H. Transcriptome-wide identification of RNA binding sites by CLIP-seq. Methods 63, 32–40 (2013).

    CAS  PubMed  Google Scholar 

  142. 142.

    Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Cabili, M. N. et al. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16, 20 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Li, R., Harvey, A. R., Hodgetts, S. I. & Fox, A. H. Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA 23, 872–881 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376.e316 (2018).

    CAS  PubMed  Google Scholar 

  146. 146.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Chen, M. et al. A molecular beacon-based approach for live-cell imaging of RNA transcripts with minimal target engineering at the single-molecule level. Sci. Rep. 7, 1550 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Nelles, D. A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Colognori, D., Sunwoo, H., Kriz, A. J., Wang, C. Y. & Lee, J. T. Xist deletional analysis reveals an interdependency between Xist RNA and Polycomb complexes for spreading along the inactive X. Mol. Cell. https://doi.org/10.1016/j.molcel.2019.01.015 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Yang for helpful comments on the manuscript. This work was supported by the Ministry of Science and Technology of China (2016YFA0100701), the Chinese Academy of Sciences (XDB19020104), the National Natural Science Foundation of China (31830108, 31821004, 31725009, 31861143025), and the Howard Hughes Medical Institute (55008728). We apologize to those whose work we were unable to cite due to space limitations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Chen.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, RW., Wang, Y. & Chen, LL. Cellular functions of long noncoding RNAs. Nat Cell Biol 21, 542–551 (2019). https://doi.org/10.1038/s41556-019-0311-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing