Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CRISPR

MicroRNAs tame CRISPR–Cas9

MicroRNAs (miRNAs) repress target mRNAs, often with exquisite tissue specificity. Wang et al. exploit the specific expression of miRNAs to regulate guide production for Cas9. Their method enables novel strategies to simultaneously measure the activity of multiple miRNAs and restrict Cas9 binding or genome editing to precisely defined cell types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The miRNA-inducible CRISPR–Cas9 (MICR) platform can monitor miRNA activity or restrict the activity of Cas9 or its fusion protein derivatives to precisely defined cell types.

References

  1. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  Google Scholar 

  2. Wang, X.-W. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-019-0292-7 (2019).

    Article  PubMed  Google Scholar 

  3. Bartel, D. P. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  4. Zhao, Y. et al. Cell 129, 303–317 (2007).

    Article  CAS  Google Scholar 

  5. Lagos-Quintana, M. et al. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  Google Scholar 

  6. van Rooij, E. et al. Science 316, 575–579 (2007).

    Article  Google Scholar 

  7. Fiedler, J. & Thum, T. Arterioscler. Thromb. Vasc. Biol. 33, 201–205 (2013).

    Article  CAS  Google Scholar 

  8. Issler, O. & Chen, A. Nat. Rev. Neurosci. 16, 201–212 (2015).

    Article  CAS  Google Scholar 

  9. Liao, Q., Wang, B., Li, X. & Jiang, G. Oncotarget 8, 3666–3682 (2017).

    PubMed  Google Scholar 

  10. Feng, Y.-H. & Tsao, C.-J. Biomed. Rep. 5, 395–402 (2016).

    Article  CAS  Google Scholar 

  11. Chavez, A. et al. Nat. Methods 12, 326–328 (2015).

    Article  CAS  Google Scholar 

  12. Wang, N. et al. Nat. Commun. 10, 95 (2019).

    Article  Google Scholar 

  13. Wu, J. C., Sundaresan, G., Iyer, M. & Gambhir, S. S. Mol. Ther. 4, 297–306 (2001).

    Article  CAS  Google Scholar 

  14. Gilbert, L. A. et al. Cell 159, 647–661 (2014).

    Article  CAS  Google Scholar 

  15. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Nature 533, 420–424 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karina Jouravleva or Phillip D. Zamore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouravleva, K., Zamore, P.D. MicroRNAs tame CRISPR–Cas9. Nat Cell Biol 21, 416–417 (2019). https://doi.org/10.1038/s41556-019-0302-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0302-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing