Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye

Abstract

During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5–dopamine pathway, regulates optic axis clearance in preparation for visual function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Opn5 is expressed in a distinct subset of RGCs.
Fig. 2: Precocious hyaloid vessel regression in the Opn5-null mice and absence of 380-nm photons.
Fig. 3: OPN5-dependent and light-dependent pathways regulate dopamine levels in the neonatal mouse eye.
Fig. 4: Light-dependent activation of phospho-T53-DAT in the IPL requires OPN5.
Fig. 5: OPN5 RGCs use Vgat in a hyaloid regression pathway: a model for OPN4–VEGFA and OPN5–dopamine pathway integration.
Fig. 6: Retinal dopamine promotes hyaloid vessel regression via DRD2-dependent suppression of VEGFR2 activity.

Data availability

Source data for all figures have been provided as Supplementary Table 2. Additional experimental repeats for key retinal labelling experiments have been deposited on Figshare (https://doi.org/10.6084/m9.figshare.7450961). All other data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Schiller, P. H. & Tehovnik, E. J. Vision and the Visual System (Oxford University Press, 2015).

  2. 2.

    Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24, 90–99 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Terakita, A. & Nagata, T. Functional properties of opsins and their contribution to light-sensing physiology. Zoolog. Sci. 31, 653–659 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Phil. Trans. R. Soc. B 364, 2881–2895 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Nathans, J. Rhodopsin: structure, function, and genetics. Biochemistry 31, 4923–4931 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    Palczewski, K. & Orban, T. From atomic structures to neuronal functions of G protein-coupled receptors. Annu. Rev. Neurosci. 36, 139–164 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Yamashita, T. et al. Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation. J. Biol. Chem. 289, 3991–4000 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Sato, K. et al. Two UV-sensitive photoreceptor proteins, Opn5m and Opn5m2 in ray-finned fish with distinct molecular properties and broad distribution in the retina and brain. PLoS One 11, e0155339 (2016).

  13. 13.

    Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc. Natl Acad. Sci. USA 107, 22084–22089 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Kojima, D. et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One 6, e26388 (2011).

  15. 15.

    Tarttelin, E. E., Bellingham, J., Hankins, M. W., Foster, R. G. & Lucas, R. J. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett. 554, 410–416 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Nakane, Y. et al. A mammalian neural tissue opsin (opsin 5) is a deep brain photoreceptor in birds. Proc. Natl Acad. Sci. USA 107, 15264–15268 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Ota, W., Nakane, Y., Hattar, S. & Yoshimura, T. Impaired circadian photoentrainment in Opn5-null mice. iScience 6, 299–305 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Buhr, E. D. et al. Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea. Proc. Natl Acad. Sci. USA 112, 13093–13098 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Joyner, A. L. & Zervas, M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev. Dyn. 235, 2376–2385 (2006).

    Article  Google Scholar 

  20. 20.

    Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Rodriguez, A. R., de Sevilla Muller, L. P. & Brecha, N. C. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 522, 1411–1443 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Haverkamp, S. & Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    Rao, S. et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243–246 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Lobov, I. B. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Dickson, P. W. & Briggs, G. D. Tyrosine hydroxylase: regulation by feedback inhibition and phosphorylation. Adv. Pharmacol. 68, 13–21 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Basu, S. et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 7, 569–574 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Sinha, S. et al. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J. Cell Sci. 122, 3385–3392 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Wulle, I. & Schnitzer, J. Distribution and morphology of tyrosine hydroxylase-immunoreactive neurons in the developing mouse retina. Brain Res. Dev. Brain Res. 48, 59–72 (1989).

    CAS  Article  Google Scholar 

  30. 30.

    Witkovsky, P., Nicholson, C., Rice, M. E., Bohmaker, K. & Meller, E. Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc. Natl Acad. Sci. USA 90, 5667–5671 (1993).

    CAS  Article  Google Scholar 

  31. 31.

    Newkirk, G. S., Hoon, M., Wong, R. O. & Detwiler, P. B. Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J. Neurophysiol. 110, 536–552 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Cameron, M. A. et al. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur. J. Neurosci. 29, 761–767 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Iuvone, P. M., Galli, C. L., Garrison-Gund, C. K. & Neff, N. H. Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901–902 (1978).

    CAS  Article  Google Scholar 

  34. 34.

    Witkovsky, P., Gabriel, R., Haycock, J. W. & Meller, E. Influence of light and neural circuitry on tyrosine hydroxylase phosphorylation in the rat retina. J. Chem. Neuroanat. 19, 105–116 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Jackson, C. R., Capozzi, M., Dai, H. & McMahon, D. G. Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function. J. Neurosci. 34, 4627–4633 (2014).

    Article  Google Scholar 

  36. 36.

    Vaughan, R. A. & Foster, J. D. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci. 34, 489–496 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Foster, J. D. et al. Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. J. Biol. Chem. 287, 29702–29712 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Rothman, R. B. et al. GBR12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol. Biochem. Behav. 40, 387–397 (1991).

    CAS  Article  Google Scholar 

  39. 39.

    Rao, S. et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243–246 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    Benoit-Marand, M., Ballion, B., Borrelli, E., Boraud, T. & Gonon, F. Inhibition of dopamine uptake by D2 antagonists: an in vivo study. J. Neurochem. 116, 449–458 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    Hack, I., Peichl, L. & Brandstätter, J. H. An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl Acad. Sci. USA 96, 14130–14135 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    Yang, X. Characterization of receptors for glutamate and GABA in retinal neurons. Prog. Neurobiol. 73, 127–150 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    Delwig, A. et al. Glutamatergic neurotransmission from melanopsin retinal ganglion cells is required for neonatal photoaversion but not adult pupillary light reflex. PLoS One 8, e83974 (2013).

  44. 44.

    Johnson, J. et al. Vesicular neurotransmitter transporter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J. Neurosci. 23, 518–529 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    Hirano, A. A. et al. Targeted deletion of vesicular GABA transporter from retinal horizontal cells eliminates feedback modulation of photoreceptor calcium channels. eNeuro 3, ENEURO.0148-15.2016 (2016).

    Article  Google Scholar 

  46. 46.

    Johnson, J. et al. Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J. Neurosci. 27, 7245–7255 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Rowan, S. & Cepko, C. L. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271, 388–402 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Jackson, C. R. et al. Retinal dopamine mediates multiple dimensions of light-adapted vision. J. Neurosci. 32, 9359–9368 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    Klimova, L., Lachova, J., Machon, O., Sedlacek, R. & Kozmik, Z. Generation of mRx-Cre transgenic mouse line for efficient conditional gene deletion in early retinal progenitors. PLoS One 8, e63029 (2013).

  50. 50.

    Setler, P. E., Sarau, H. M., Zirkle, C. L. & Saunders, H. L. The central effects of a novel dopamine agonist. Eur. J. Pharmacol. 50, 419–430 (1978).

    CAS  Article  Google Scholar 

  51. 51.

    Bhattacharya, R. et al. The neurotransmitter dopamine modulates vascular permeability in the endothelium. J. Mol. Signal. 3, 14 (2008).

    Article  Google Scholar 

  52. 52.

    Shatz, C. J. Emergence of order in visual system development. J. Physiol. Paris 90, 141–150 (1996).

    CAS  Article  Google Scholar 

  53. 53.

    Wong, R. O. L. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    Arroyo, D. A., Kirkby, L. A. & Feller, M. B. Retinal waves modulate an intraretinal circuit of intrinsically photosensitive retinal ganglion cells. J. Neurosci. 36, 6892–6905 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Hussein, M. A. et al. Evaluating the association of autonomic drug use to the development and severity of retinopathy of prematurity. J. AAPOS 18, 332–337 (2014).

    Article  Google Scholar 

  56. 56.

    Iuvone, P. M. Is retinal dopamine involved in the loss of visual function in retinopathy of prematurity? Invest. Ophthalmol. Vis. Sci. 57, 3380 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Yang, M. B. B., Rao, S., Copenhagen, D. R. R. & Lang, R. A. A. Length of day during early gestation as a predictor of risk for severe retinopathy of prematurity. Ophthalmology 120, 2706–2713 (2013).

    Article  Google Scholar 

  58. 58.

    Torii, H. et al. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine 15, 210–219 (2017).

    Article  Google Scholar 

  59. 59.

    Zhou, X., Pardue, M. T., Iuvone, P. M. & Qu, J. Dopamine signaling and myopia development: what are the key challenges. Prog. Retin. Eye Res. 61, 60–71 (2017).

    CAS  Article  Google Scholar 

  60. 60.

    Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    Nelson, A. B. et al. A comparison of striatal-dependent behaviors in wild-type and hemizygous drd1a and Drd2 BAC transgenic mice. J. Neurosci. 32, 9119–9123 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Speeg (Lang lab) for excellent mouse colony management, L. Sankaran and P. Lyuboslavsky (Iuvone lab) for technical assistance, and D. Bredl and D. Copenhagen (UCSF) for providing tissue samples from the Drd2-eGFP mice. We also thank Y. Chen and Y.-C. Hu of the CCHMC Transgenic Animal and Genome Editing Core Facility for generating genetically modified mouse lines. This work was supported by NIH R01 GM124246 to E.D.B., NIH R01EY026921 to R.N.V.G., NIH P30EY001730 to the University of Washington, the Mark J. Daily, MD Research Fund to the University of Washington, and unrestricted grants to the University of Washington and Emory University Department of Ophthalmology from Research to Prevent Blindness. This work was also supported by NIH grants R01 EY027077 (R.A.L. and S.R.), R01 EY027711 (P.M.I. and R.A.L.), R01 EY022917 (R.S.H.) and R01 EY004864 (P.M.I.), by funds from the Goldman Chair of the Abrahamson Pediatric Eye Institute at Cincinnati Children’s Hospital Medical Center and by grant BIOCEV-CZ.1.05/1.1.00/02.0109 (Z.K.). This work was supported by NIH grant 2T32GM063483, which supports the UCCOM/CCHMC Medical Scientist Training Program.

Author information

Affiliations

Authors

Contributions

M.-T.T.N., S.V., G.N., Y.O., E.D.B., B.A.U., N.A., S.R. and U.T. performed the experimental analysis. M.B. designed and built the required lighting systems. M.D. and Z.K. provided essential tools. M.-T.T.N., S.V., G.N., Y.O., E.D.B., S.R., R.S.H., P.M.I. and R.N.V.G. designed the experiments and provided coordinating leadership within the collaborative group. M.-T.T.N., S.V., G.N., E.D.B., P.M.I., R.N.V.G. and R.A.L. wrote the paper. R.A.L. designed the experimental analysis and provided overall project leadership.

Corresponding author

Correspondence to Richard A. Lang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Mouse Opn5 alleles.

a-e, Schematics of the Opn5 alleles used in this study. a, The Opn5 allele as targeted in ES cells by the International Knockout Mouse Consortium. Exons are numbered yellow boxes. FRT, FLP recombinase site-specific recombination sites. En2 SA, Engrailed 2 splice acceptor. IRES, internal ribosome entry sequence. Lacz, β-galactosidase open reading frame. pA, polyadenylation signal. loxP, cre recombinase site specific recombination sequences. hbactP, human β-actin promoter. Right-facing arrow indicates the start point of transcription for hBactP. neo, the neomycin resistance gene. b, The Opn5lacz allele generated after germ-line recombination at the loxP sites. c, the Opn5fl allele generated after germ-line recombination at the FRT sites. d, The Opn5- allele generated after germ-line recombination of the Opn5fl allele at the loxP sites. e, The Opn5cre allele generated by CRISPR targeting of Opn5 exon 1. Further description is available in Materials and Methods section.

Supplementary Figure 2 The retinal architecture of Opn5 null mice appears unchanged.

a-f, Cryosections of retina from P8 Opn5+/+ control (a, c, e) and Opn5-/- null (b, d, f) mice labelled for nuclei with Hoechst 33258 (a-f, blue) for RBPMS (a-d, pink), calretinin (a, b, red), TH (a, b, green), ChAT (c, d, green), or DAT/SLC6A3 (e, f, red). g, h, Labelling of two examples of P8 retina from Opn5cre; Ai14 (tdTomato from this reporter in red), for nuclei with Hoechst 33258 (blue), and for the pan-RGC marker RBPMS (green). We could detect no substantial change in the distribution of RBPMS, TH, Calretinin, Chat or DAT/SLC6A3. Opn5cre positive RGCs are RBPMS+ regardless of whether they are within the ganglion cell layer (GCL) or are displaced ganglion cells (dRGC). In both examples, the boxed region is magnified in the adjacent panels to show more clearly the tdTomato-RBPMS colabeling. Scale bars are 50 μm. Image panels are representative of at least three separate experiments.

Supplementary Figure 3 Axon paths and marker labelling of Opn5 lineage cells.

a-c, tdTomato signal (red) in Opn5cre; Ai14 P28 mouse brain cryosections in the optic tracts (a), superior colliculus (b) and lateral geniculate nucleus (c). These projections are characteristic of retinal ganglion cells. d-g, Opn5cre; Ai6 P8 retinal cryosections imaged for nuclei with DAPI (d, grayscale), for ZsGreen1 from Ai6 (d, e, green), for RBPMS (d, f, red) and for Calretinin (d, g, blue). White outlines of green cells are displayed on the red RBPMS (f) and blue Calretinin (g) channels. in (d) a displaced RGC and some of the amacrine cells are indicated. RBPMS is exclusive to RGCs and Calretinin identifies both amacrine cells and a subset of RGCs. We determined the RBPMS and calretinin status of Opn5cre; Ai6 positive cells from n-3 mice at P8. White outlines of Opn5cre; Ai14 positive cell bodies were moved to images of the RBMPS and Calretinin labelling channels and counts performed. In these sections there were 88 Opn5cre; Ai6 positive cells. In these same sections, there were 1446 RBPMS positive cells and 910 Calretinin positive cells. All 88 Opn5cre; Ai6 positive cells were positive for RBPMS and 50/88 were also positive for Calretinin. Importantly, there were zero Opn5cre; Ai14 positive cells that expressed only calretinin; they invariably also expressed RBPMS. This analysis provides evidence that Opn5cre is expressed is RBPMS positive RGCs, but not in amacrine cells. Scale bars 500 μm (a) 200 μm (b, c) 50 μm (d). Image panels are representative of at least three separate experiments.

Supplementary Figure 4 Flt1 (VEGFR1) and dopamine pathway agonists and antagonists regulate hyaloid vessel regression.

a, b, Hyaloid vessel preparations from P8 control Chx10-cre; Flt1+/+ (a) and Chx10-cre; Flt1fl/fl (b) mice. Scale bars 200 μm. c, Quantification of hyaloid vessel numbers for mice from (a) but over a P3-P8 time-course. The melanopsin (OPN4)-dependent response pathway that regulates hyaloid vessel regression uses VEGFA as an intermediate. Furthermore, when FLT1 (aka VEGFR1), a naturally occurring inhibitor of VEGFA is conditionally deleted from the retina, hyaloid persistence is the result (a-c). Thus, it was possible that the precocious hyaloid regression of the Opn5 null could be explained by reduced levels of VEGFA or by elevated levels of FLT1. d, e, ELISA quantification of VEGFA and FLT1 in the P6 vitreous of Opn5+/+ control (d, e, grey bars), Opn5± heterozygote (d, e, light blue bars), and Opn5-/- homozygote (d, e, light blue bars). Levels of vitreal VEGFA and FLT1 were not significantly changed in the Opn5 null suggesting a mechanism of hyaloid regression distinct from that of the OPN4 pathway. f, Quantification of P8 hyaloid vessels in Opn5+/+, Opn5+/-, and Opn5-/- mice injected with the dopamine receptor agonist SKF38393 from P1-P8. Controls include uninjected and vehicle injected mice as indicated. g, Quantification of P8 hyaloid vessels in wild type mice injected with vehicle or with the dopamine receptor antagonists L741,626 or 2-CMDO as indicated. (f). Sample numbers (n) are shown at the base of each histogram bar and represent mice. p-values by (c, g), Student’s t-test, (d, e) One Way ANOVA, (f) Two Way ANOVA. Image panels are representative of at least three separate experiments.

Supplementary Figure 5 Superficial retinal vasculature in Pdgfb-icreERT2, Drd2fl/fl conditional null mice, and immunoblot densitometry for β-Tubulin, VEGFR2 and phospho-VEGFR2.

a, b, d, e, Flat-mount, isolectin-labeled, P8 retinae from control Drd2fl/fl (a, b, whole retinal disc) and Pdgfb-icreERT2; Drd2fl/fl (d, e, 20 x magnification) mice. c, d, Quantification of superficial vascular plexus migration (c) and branchpoint density (f). Sample size (n) is shown at the base of the histogram bar and represents mice. No significant differences in migration distance or vascular density were identified. Image panels are representative of at least three separate experiments. Scale bars 500 μm (a, b) 50 μm (d, e). g-i, quantification, in arbitrary units, of immunoblot band intensity for the β-tubulin (TUBB) loading control (g), as well as for VEGFR2 (h) and phospho-VEGFR2 (i) for hyaloid vessel lysates from Drd2fl/fl control (grey) and Drd2fl/fl; Pdgfb-icreERT2 experimental (blue) mice. The horizontal axis indicates the lysate volume that was loaded for each band quantification. Pearson correlation coefficients for each set of three points are indicated. These data represent one sample of the n = 3 mice used for quantification of phospho-Y1173-VEGFR2.

Supplementary Figure 6 Unprocessed immunblot data showing Dopamine and VEGFR2 signaling components.

(4i) Unprocessed scans of immunoblot data from Fig 4i detecting phospho-T53-DAT (p-DAT), total DAT and TUBB from retina showing lower levels of phospho-T53-DAT in Opn5 control and null retina. (6k) Unprocessed scans of immunoblot data from Fig 6k detecting VEGFR2, pY1173-VEGFR2 and TUBB in hyaloid vessels from Drd2fl/fl and Drd2fl/fl;PDGFB-icreERT2 mice. A three step, two-fold loading dilution is indicated on the blot as 20, 10, 5 ul. (6m-n) Unprocessed scans of immunoblot data from Fig 6m, n detecting (m) VEGFR2, pY1173-VEGFR2 and (n) AKT, pS473-AKT in hyaloid vessels from Opn5 control and null animals. The genotype of sample loaded in each lane is indicated at the top of each panel, animal ID indicated on pDAT immunoblot.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table titles/legends.

41556_2019_301_MOESM2_ESM.pdf

Reporting Summary

Supplementary Table 1

List of antibodies.

Supplementary Table 2

Statistics source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, MT.T., Vemaraju, S., Nayak, G. et al. An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nat Cell Biol 21, 420–429 (2019). https://doi.org/10.1038/s41556-019-0301-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing