Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication

Abstract

The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical characteristics of the different EV subtypes.
Fig. 2: Mechanisms of EV secretion.
Fig. 3: The three steps of EV uptake by acceptor cells.

Similar content being viewed by others

References

  1. Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41, 59–72 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Ratajczak, J. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marzesco, A.-M. et al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. McConnell, R. E. et al. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185, 1285–1298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maguire, J. E. et al. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Mol. Biol. Cell 26, 2823–2832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tanaka, Y., Okada, Y. & Hirokawa, N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435, 172–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Muratori, C. et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6, 218–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karimi, N. et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci. 75, 2873–2886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  22. Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013).

    CAS  PubMed  Google Scholar 

  27. Janvier, K. et al. The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog. 7, e1001265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edgar, J. R., Manna, P. T., Nishimura, S., Banting, G. & Robinson, M. S. Tetherin is an exosomal tether. eLife 5, e17180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buschow, S. I., Liefhebber, J. M. P., Wubbolts, R. & Stoorvogel, W. Exosomes contain ubiquitinated proteins. Blood Cells Mol. Dis. 35, 398–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, V. L., Jackson, L. & Schorey, J. S. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J. Immunol. 195, 2722–2730 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Villarroya-Beltri, C. et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 7, 13588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Bianco, F. et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 28, 1043–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shamseddine, A. A., Airola, M. V. & Hannun, Y. A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 57, 24–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Menck, K. et al. Neutral sphingomyolinases control extracellular vesicles budding from the plasma membrane. J. Extracell. Vesicles 6, 1378056 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vuckovic, S. et al. The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells. Br. J. Haematol. 177, 423–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Stoffel, W. et al. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition. Cell Death Dis. 7, e2488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scarlatti, F. et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 279, 18384–18391 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Beer, K. B. et al. Extracellular vesicle budding is inhibited by redundant regulators of TAT-5 flippase localization and phospholipid asymmetry. Proc. Natl Acad. Sci. USA 115, E1127–E1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hugel, B., Martínez, M. C., Kunzelmann, C. & Freyssinet, J.-M. Membrane microparticles: two sides of the coin. Physiology 20, 22–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Fujii, T., Sakata, A., Nishimura, S., Eto, K. & Nagata, S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc. Natl Acad. Sci. USA 112, 12800–12805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baietti, M. F. et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Imjeti, N. S. et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc. Natl Acad. Sci. USA 114, 12495–12500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghossoub, R. et al. Syntenin–ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Durcin, M. et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J. Extracell. Vesicles 6, 1305677 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Scott, C. C. & Gruenberg, J. Ion flux and the function of endosomes and lysosomes: pH is just the start. Bioessays 33, 103–110 (2010).

    Article  CAS  Google Scholar 

  47. Guo, H. et al. Atg5 disassociates the V1V0-ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev. Cell 43, 716–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Palokangas, H., Ying, M., Väänänen, K. & Saraste, J. Retrograde transport from the pre-Golgi intermediate compartment and the Golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. Mol. Biol. Cell 9, 3561–3578 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhen, Y. & Stenmark, H. Cellular functions of Rab GTPases at a glance. J. Cell Sci. 128, 3171–3176 (2015).

    CAS  PubMed  Google Scholar 

  50. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J. Cell Biol. 189, 223–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Webber, J. P. et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Ostenfeld, M. S. et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 74, 5758–5771 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Gerber, P. P. et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 209, 435–452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Desnos, C. et al. Rab27a and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J. Cell Biol. 163, 559–570 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marks, M. S., Heijnen, H. F. G. & Raposo, G. Lysosome-related organelles: unusual compartments become mainstream. Curr. Opin. Cell Biol. 25, 495–505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bobrie, A. et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72, 4920–4930 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Savina, A., Fader, C. M., Damiani, M. T. & Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Messenger, S. W., Woo, S. S., Sun, Z. & Martin, T. F. J. A Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J. Cell Biol. 217, 2877–2890 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions. Science 352, 242–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ménager, M. M. et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat. Immunol. 8, 257–267 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Hyenne, V. et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 211, 27–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koles, K. et al. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem. 287, 16820–16834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verweij, F. J. et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol. 217, 1129–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sedgwick, A. E. & D’Souza-Schorey, C. The biology of extracellular microvesicles. Traffic 19, 319–327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Antonyak, M. A., Wilson, K. F. & Cerione, R. A. R(h)oads to microvesicles. Small GTPases 3, 219–224 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Granger, E., Mcnee, G., Allan, V. & Woodman, P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin. Cell Dev. Biol. 31, 20–29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackson, C. E., Scruggs, B. S., Schaffer, J. E. & Hanson, P. I. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys. J. 113, 1–11 (2017).

    Article  CAS  Google Scholar 

  71. Freed, E. O. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 13, 484–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jouve, M., Sol-Foulon, N., Watson, S., Schwartz, O. & Benaroch, P. HIV-1 buds and accumulates in ‘nonacidic’ endosomes of macrophages. Cell Host Microbe 2, 85–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Votteler, J. & Sundquist, W. I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Sette, P. et al. HIV-1 nucleocapsid mimics the membrane adaptor syntenin PDZ to gain access to ESCRTs and promote virus budding. Cell Host Microbe 19, 336–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spearman, P. Viral interactions with host cell Rab GTPases. Small GTPases 9, 192–201 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Joshi, A., Garg, H., Ablan, S. D. & Freed, E. O. Evidence of a role for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery in HIV-1 assembly and release. J. Biol. Chem. 286, 29861–29871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gladnikoff, M., Shimoni, E., Gov, N. S. & Rousso, I. Retroviral assembly and budding occur through an actin-driven mechanism. Biophys. J. 97, 2419–2428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rocha-Perugini, V., Gordon-Alonso, M. & Sánchez-Madrid, F. PIP2 : choreographer of actin-adaptor proteins in the HIV-1 dance. Trends Microbiol. 22, 379–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brugger, B. et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA 103, 2641–2646 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Subra, C., Laulagnier, K., Perret, B. & Record, M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89, 205–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Orentas, R. J. & Hildreth, J. E. Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res. Hum. Retroviruses 9, 1157–1165 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Grigorov, B. et al. A role for CD81 on the late steps of HIV-1 replication in a chronically infected T cell line. Retrovirology 6, 28 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gluschankof, P., Mondor, I., Gelderblom, H. R. & Sattentau, Q. J. Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations. Virology 230, 125–133 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Nolte-‘t Hoen, E., Cremer, T., Gallo, R. C. & Margolis, L. B. Extracellular vesicles and viruses: are they close relatives? Proc. Natl Acad. Sci. USA 113, 9155–9161 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Mulcahy, L. A., Pink, R. C. & Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Article  CAS  Google Scholar 

  89. Tkach, M. et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J. 36, 3012–3028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt–PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  PubMed  CAS  Google Scholar 

  92. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Korkut, C. et al. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron 77, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fevrier, B. et al. Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 9683–9688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vella, L. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol. 211, 582–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Mack, M. et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med. 6, 769–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Chivet, M. et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J. Extracell. Vesicles 3, 24722 (2014).

    Article  PubMed  Google Scholar 

  99. Costa Verdera, H., Gitz-Francois, J. J., Schiffelers, R. M. & Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release 266, 100–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Svensson, K. J. et al. Exosome uptake depends on ERK1/2–heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288, 17713–17724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Horibe, S., Tanahashi, T., Kawauchi, S., Murakami, Y. & Rikitake, Y. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer 18, 47 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Antonyak, M. A. et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc. Natl Acad. Sci. USA 108, 4852–4857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morelli, A. E. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J.-P. & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl Acad. Sci. USA 110, 17380–17385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Brown, M. S. & Goldstein, J. L. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl Acad. Sci. USA 71, 788–792 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nanbo, A., Kawanishi, E., Yoshida, R. & Yoshiyama, H. Exosomes derived from Epstein–Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 87, 10334–10347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kanada, M. et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl Acad. Sci. USA 112, E1433–E1442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Montecalvo, A. et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. White, J. & Helenius, A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl Acad. Sci. USA 77, 3273–3277 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. del Conde, I., Shrimpton, C. N., Thiagarajan, P. & Lopez, J. A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106, 1604–1611 (2005).

    Article  PubMed  CAS  Google Scholar 

  115. Arraud, N. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Santos, M. F. et al. VAMP-associated protein-A and oxysterol-binding protein-related protein 3 promote the entry of late endosomes into the nucleoplasmic reticulum. J. Biol. Chem. 293, 13834–13848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heusermann, W. et al. Exosomes surf on filopodia to enter cells at endocytic hot spots and shuttle within endosomes to scan the ER. J. Cell Biol. 213, 173–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Théry, C. et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

  119. Atkin-Smith, G. K. et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the numerous authors who we could not cite the work of owing to space limitations. Our work is supported by INSERM, Institut Curie, Ministry of Education, and grants from INCa (INCA-11548), NIDA (DA040385 under subaward from Johns Hopkins Medical University), ANRS (2015-1), French National Research Agency (ANR-10-IDEX-0001-02 PSL* and ANR- 11-LABX-0043), SIDACTION (17-1-AAE-1138), Fondation ARC (PGA1 RF20180206962 to C.T. and PJA 20171206453 to G.L.) and Canceropôle Ile-de-France (Emergence grant 2018 to G.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clotilde Théry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, M., Martin-Jaular, L., Lavieu, G. et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21, 9–17 (2019). https://doi.org/10.1038/s41556-018-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0250-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing