Review Article | Published:

Integrin trafficking in cells and tissues

Abstract

Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic–exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

  2. 2.

    Maartens, A. P. & Brown, N. H. Anchors and signals: the diverse roles of integrins in development. Curr. Top. Dev. Biol. 112, 233–272 (2015).

  3. 3.

    Mould, A. P. & Humphries, M. J. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr. Opin. Cell Biol. 16, 544–551 (2004).

  4. 4.

    De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P. & Ivaska, J. Integrin traffic—the update. J. Cell Sci. 128, 839–852 (2015).

  5. 5.

    Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

  6. 6.

    Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

  7. 7.

    Legate, K. R. & Fassler, R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 122, 187–198 (2009).

  8. 8.

    Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic 13, 610–625 (2012).

  9. 9.

    Nieswandt, B., Varga-Szabo, D. & Elvers, M. Integrins in platelet activation. J. Thromb. Haemost 7, 206–209 (2009).

  10. 10.

    Bouvard, D., Pouwels, J., De Franceschi, N. & Ivaska, J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell Biol. 14, 432–444 (2013).

  11. 11.

    Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. (2019).

  12. 12.

    Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17, 1577–1587 (2015).

  13. 13.

    Horton, E. R. et al. The integrin adhesome network at a glance. J. Cell Sci. 129, 4159–4163 (2016).

  14. 14.

    Paul, N. R., Jacquemet, G. & Caswell, P. T. Endocytic trafficking of integrins in cell migration. Curr. Biol. 25, R1092–R1105 (2015).

  15. 15.

    Valdembri, D. & Serini, G. Regulation of adhesion site dynamics by integrin traffic. Curr. Opin. Cell Biol. 24, 582–591 (2012).

  16. 16.

    Alanko, J. et al. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17, 1412–1421 (2015).

  17. 17.

    Nader, G. P. F., Ezratty, E. J. & Gundersen, G. G. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat. Cell Biol. 18, 491–503 (2016).

  18. 18.

    Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol. 27, 291–320 (2011).

  19. 19.

    Barrow-McGee, R. et al. 1-integrin–c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat. Commun. 7, 11942 (2016).

  20. 20.

    Wilson, B. J., Allen, J. L. & Caswell, P. T. Vesicle trafficking pathways that direct cell migration in 3D and in vivo. Traffic. https://doi.org/10.1111/tra.12605 (2018).

  21. 21.

    Zhen, Y. & Stenmark, H. Cellular functions of Rab GTPases at a glance. J. Cell Sci. 128, 3171–3176 (2015).

  22. 22.

    Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin–integrin complexes. Dev. Cell 19, 148–159 (2010).

  23. 23.

    Huet-Calderwood, C. et al. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat. Commun. 8, 570 (2017).

  24. 24.

    Dozynkiewicz, M. A. et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145 (2012).

  25. 25.

    Bridgewater, R. E., Norman, J. C. & Caswell, P. T. Integrin trafficking at a glance. J. Cell Sci. 125, 3695–3701 (2012).

  26. 26.

    Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

  27. 27.

    Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

  28. 28.

    Ezratty, E. J., Partridge, M. A. & Gundersen, G. G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat. Cell Biol. 7, 581–590 (2005).

  29. 29.

    Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

  30. 30.

    Eskova, A. et al. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J. Cell Sci. 127, 2433–2447 (2014).

  31. 31.

    Atherton, P., Lausecker, F., Harrison, A. & Ballestrem, C. Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity. J. Cell Sci. 130, 2277–2291 (2017).

  32. 32.

    Lakshminarayan, R. et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16, 592–603 (2014).

  33. 33.

    Doherty, G. J. et al. The endocytic protein GRAF1 is directed to cell–matrix adhesion sites and regulates cell spreading. Mol. Biol. Cell 22, 4380–4389 (2011).

  34. 34.

    Bass, M. D. et al. A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev. Cell 21, 681–693 (2011).

  35. 35.

    del Pozo, M. A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat. Cell Biol. 7, 901–908 (2005).

  36. 36.

    Shi, F. & Sottile, J. Caveolin-1-dependent 1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell Sci. 121, 2360–2371 (2008).

  37. 37.

    Fabbri, M. et al. Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the αL2 integrin, LFA-1, during leukocyte chemotaxis. Mol. Biol. Cell 16, 5793–5803 (2005).

  38. 38.

    Gu, Z., Noss, E. H., Hsu, V. W. & Brenner, M. B. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. J. Cell Biol. 193, 61–70 (2011).

  39. 39.

    Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol. 173, 767–780 (2006).

  40. 40.

    Astro, V. et al. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover. Sci. Rep 6, 33653 (2016).

  41. 41.

    Astro, V., Chiaretti, S., Magistrati, E., Fivaz, M. & de Curtis, I. Liprin- 1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration. J. Cell Sci. 127, 3862–3876 (2014).

  42. 42.

    Calderwood, D. A. et al. Integrin cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl Acad. Sci. USA 100, 2272–2277 (2003).

  43. 43.

    Sandri, C. et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res. 22, 1479–1501 (2012).

  44. 44.

    Teckchandani, A. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. J. Cell Biol. 186, 99–111 (2009).

  45. 45.

    Teckchandani, A., Mulkearns, E. E., Randolph, T. W., Toida, N. & Cooper, J. A. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin 1 endocytosis. Mol. Biol. Cell 23, 2905–2916 (2012).

  46. 46.

    Ramsay, A. G. et al. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin αvβ6. Cancer Res. 67, 5275–5284 (2007).

  47. 47.

    De Franceschi, N. et al. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat. Struct. Mol. Biol. 23, 172–179 (2016).

  48. 48.

    Yu, C. H. et al. Integrin-β3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat. Commun. 6, 8672 (2015).

  49. 49.

    Mygind, K. J., Schwarz, J., Sahgal, P., Ivaska, J. & Kveiborg, M. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration. J. Cell Sci. 131, jcs205393 (2018).

  50. 50.

    Morgan, M. R. et al. Syndecan-4 phosphorylation is a control point for integrin recycling. Dev. Cell 24, 472–485 (2013).

  51. 51.

    Mai, A. et al. Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1. J. Cell Sci. 127, 1938–1952 (2014).

  52. 52.

    Hang, Q. et al. A key regulator of cell adhesion: identification and characterization of important N-glycosylation sites on integrin α5 for cell migration. Mol. Cell. Biol. 37, e00558–16 (2017).

  53. 53.

    Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

  54. 54.

    Sun, L. et al. Rab34 regulates adhesion, migration, and invasion of breast cancer cells. Oncogene 37, 3698–3714 (2018).

  55. 55.

    Argenzio, E. et al. CLIC4 regulates cell adhesion and 1 integrin trafficking. J. Cell Sci. 127, 5189–5203 (2014).

  56. 56.

    Allaire, P. D. et al. Interplay between Rab35 and Arf6 controls cargo recycling to coordinate cell adhesion and migration. J. Cell Sci. 126, 722–731 (2013).

  57. 57.

    Riggs, K. A. et al. Regulation of integrin endocytic recycling and chemotactic cell migration by syntaxin 6 and VAMP3 interaction. J. Cell Sci. 125, 3827–3839 (2012).

  58. 58.

    Tiwari, A. et al. Endothelial cell migration on fibronectin is regulated by syntaxin 6-mediated α5β1 integrin recycling. J. Biol. Chem. 286, 36749–36761 (2011).

  59. 59.

    Shafaq-Zadah, M. et al. Persistent cell migration and adhesion rely on retrograde transport of β1 integrin. Nat. Cell Biol. 18, 54–64 (2016).

  60. 60.

    McNally, K. E. et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat. Cell Biol. 19, 1214–1225 (2017).

  61. 61.

    Böttcher, R. T. et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat. Cell Biol. 14, 584–592 (2012).

  62. 62.

    Steinberg, F., Heesom, K. J., Bass, M. D. & Cullen, P. J. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J. Cell Biol. 197, 219–230 (2012).

  63. 63.

    Ratcliffe, C. D. H., Sahgal, P., Parachoniak, C. A., Ivaska, J. & Park, M. Regulation of cell migration and β1 integrin trafficking by the endosomal adaptor GGA3. Traffic 17, 670–688 (2016).

  64. 64.

    Diggins, N. L., Kang, H., Weaver, A. & Webb, D. J. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J. Cell Sci. 131, jcs207019 (2018).

  65. 65.

    Sahgal, P. et al. GGA2 and RAB13 regulate activity-dependent β1-integrin recycling. Preprint at https://www.biorxiv.org/content/early/2018/06/22/353086 (2018).

  66. 66.

    Perini, E. D., Schaefer, R., Stöter, M., Kalaidzidis, Y. & Zerial, M. Mammalian CORVET is required for fusion and conversion of distinct early endosome subpopulations. Traffic 15, 1366–1389 (2014).

  67. 67.

    Jonker, C. T. H. et al. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat. Commun. 9, 792 (2018).

  68. 68.

    Zech, T. et al. The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration. J. Cell Sci. 124, 3753–3759 (2011).

  69. 69.

    Jacquemet, G., Humphries, M. J. & Caswell, P. T. Role of adhesion receptor trafficking in 3D cell migration. Curr. Opin. Cell Biol. 25, 627–632 (2013).

  70. 70.

    Mana, G. et al. PPFIA1 drives active α5β1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nat. Commun. 7, 13546 (2016).

  71. 71.

    Hamidi, H. & Ivaska, J. Vascular morphogenesis: an integrin and fibronectin highway. Curr. Biol. 27, R158–R161 (2017).

  72. 72.

    Rainero, E. Extracellular matrix internalization links nutrient signalling to invasive migration. Int. J. Exp. Pathol. 99, 4–9 (2018).

  73. 73.

    Bridgewater, R. E., Streuli, C. H. & Caswell, P. T. Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Sci. Rep. 7, 4572 (2017).

  74. 74.

    Du, J. et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc. Natl Acad. Sci. USA 108, 9466–9471 (2011).

  75. 75.

    Caswell, P. & Norman, J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18, 257–263 (2008).

  76. 76.

    Hamidi, H., Pietilä, M. & Ivaska, J. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer 115, 1017–1023 (2016).

  77. 77.

    Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

  78. 78.

    Meighan, C. M. & Schwarzbauer, J. E. Temporal and spatial regulation of integrins during development. Curr. Opin. Cell Biol. 20, 520–524 (2008).

  79. 79.

    Akhtar, N. & Streuli, C. H. An integrin–ILK–microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat. Cell Biol. 15, 17–27 (2013).

  80. 80.

    Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

  81. 81.

    Lee, J. L. & Streuli, C. H. Integrins and epithelial cell polarity. J. Cell Sci. 127, 3217–3225 (2014).

  82. 82.

    Bedzhov, I. & Zernicka-Goetz, M. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032–1044 (2014).

  83. 83.

    Shahbazi, M. N. & Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20, 878–887 (2018).

  84. 84.

    Bogdanović, O. et al. Numb/Numbl–Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev. Cell 23, 782–795 (2012).

  85. 85.

    Martinez-Morales, J. R. et al. Ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 136, 2165–2175 (2009).

  86. 86.

    Valdembri, D. et al. Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells. PLoS Biol. 7, e25 (2009).

  87. 87.

    Hakanpaa, L. et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat. Commun. 6, 5962 (2015).

  88. 88.

    Hakanpaa, L. et al. Targeting β1-integrin inhibits vascular leakage in endotoxemia. Proc. Natl Acad. Sci. USA 115, E6467–E6476 (2018).

  89. 89.

    Georgiadou, M. et al. AMPK negatively regulates tensin-dependent integrin activity. J. Cell Biol. 216, 1107–1121 (2017).

  90. 90.

    Rainero, E. et al. Ligand-occupied integrin internalization links nutrient signaling to invasive migration. Cell Rep 10, 398–413 (2015).

  91. 91.

    Goreczny, G. J., Forsythe, I. J. & Turner, C. E. Hic-5 regulates fibrillar adhesion formation to control tumor extracellular matrix remodeling through interaction with tensin1. Oncogene 37, 1699–1713 (2018).

  92. 92.

    Muranen, T. et al. Starved epithelial cells uptake extracellular matrix for survival. Nat. Commun. 8, 13989 (2017).

  93. 93.

    Georgiadou, M. & Ivaska, J. Tensins: bridging AMP-activated protein kinase with integrin activation. Trends Cell Biol 27, 703–711 (2017).

  94. 94.

    Yuan, L., Fairchild, M. J., Perkins, A. D. & Tanentzapf, G. Analysis of integrin turnover in fly myotendinous junctions. J. Cell Sci. 123, 939–946 (2010).

  95. 95.

    Pines, M. et al. Mechanical force regulates integrin turnover in Drosophila in vivo. Nat. Cell Biol. 14, 935–943 (2012).

  96. 96.

    López-Ceballos, P., Herrera-Reyes, A. D., Coombs, D. & Tanentzapf, G. In vivo regulation of integrin turnover by outside-in activation. J. Cell Sci. 129, 2912–2924 (2016).

  97. 97.

    Wallroth, A. & Haucke, V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J. Biol. Chem. 293, 1526–1535 (2018).

  98. 98.

    Ribeiro, I., Yuan, L., Tanentzapf, G., Dowling, J. J. & Kiger, A. Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet. 7, e1001295 (2011).

  99. 99.

    Ketel, K. et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature 529, 408–412 (2016).

  100. 100.

    Brower, D. L. Platelets with wings: the maturation of Drosophila integrin biology. Curr. Opin. Cell Biol. 15, 607–613 (2003).

  101. 101.

    Bhuin, T. & Roy, J. K. Rab11 is required for cell adhesion, maintenance of cell shape and actin-cytoskeleton organization during Drosophila wing development. Int. J. Dev. Biol. 55, 269–279 (2011).

  102. 102.

    Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14, 497–506 (2018).

  103. 103.

    Hogg, N., Patzak, I. & Willenbrock, F. The insider’s guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11, 416–426 (2011).

  104. 104.

    Strachan, L. R. & Condic, M. L. Cranial neural crest recycle surface integrins in a substratum-dependent manner to promote rapid motility. J. Cell Biol. 167, 545–554 (2004).

  105. 105.

    Spicer, E., Suckert, C., Al-Attar, H. & Marsden, M. Integrin α5β1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation. PLoS ONE 5, e10665 (2010).

  106. 106.

    Lilja, J. & Ivaska, J. Integrin activity in neuronal connectivity. J. Cell Sci. 131, jcs212803 (2018).

  107. 107.

    Clegg, D. O., Wingerd, K. L., Hikita, S. T. & Tolhurst, E. C. Integrins in the development, function and dysfunction of the nervous system. Front. Biosci. 8, d723–d750 (2003).

  108. 108.

    Franco, S. J. & Müller, U. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev. Neurobiol. 71, 889–900 (2011).

  109. 109.

    Frick, A. et al. Proper cerebellar development requires expression of β1-integrin in Bergmann glia, but not in granule neurons. Glia 60, 820–832 (2012).

  110. 110.

    Myers, J. P., Santiago-Medina, M. & Gomez, T. M. Regulation of axonal outgrowth and pathfinding by integrin–ECM interactions. Dev. Neurobiol. 71, 901–923 (2011).

  111. 111.

    Wojnacki, J. & Galli, T. Membrane traffic during axon development. Dev. Neurobiol. 76, 1185–1200 (2016).

  112. 112.

    Eva, R. et al. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J. Neurosci. 32, 10352–10364 (2012).

  113. 113.

    Eva, R. et al. Rab11 and its effector Rab coupling protein contribute to the trafficking of β1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J. Neurosci. 30, 11654–11669 (2010).

  114. 114.

    Falk, J., Konopacki, F. A., Zivraj, K. H. & Holt, C. E. Rab5 and Rab4 regulate axon elongation in the Xenopus visual system. J. Neurosci. 34, 373–391 (2014).

  115. 115.

    Koseki, H. et al. Selective Rab11 transport and the intrinsic regenerative ability of CNS axons. eLife 6, e26956 (2017).

  116. 116.

    Nieuwenhuis, B., Haenzi, B., Andrews, M. R., Verhaagen, J. & Fawcett, J. W. Integrins promote axonal regeneration after injury of the nervous system. Biol. Rev. 93, 1339–1362 (2018).

  117. 117.

    Rehberg, K. et al. The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth. J. Neurosci. 34, 5342–5354 (2014).

  118. 118.

    Das, L. et al. Characterization of laminin binding integrin internalization in prostate cancer cells. J. Cell. Biochem. 118, 1038–1049 (2017).

  119. 119.

    Spiess, M. et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J. Cell Biol. 217, 1929–1940 (2018).

  120. 120.

    Eisler, S.A. et al. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife 7, e35907 (2018).

  121. 121.

    De Franceschi, N. et al. ProLIF—quantitative integrin protein–protein interactions and synergistic membrane effects on proteoliposomes. J. Cell Sci. 132, jcs214270 (2018).

  122. 122.

    Streicher, P. et al. Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading. Biochim. Biophys. Acta 1788, 2291–2300 (2009).

  123. 123.

    Man, Y. K. S. et al. The novel oncolytic adenoviral mutant Ad5–3Δ-A20T retargeted to αvβ6 integrins efficiently eliminates pancreatic cancer cells. Mol. Cancer Ther. 17, 575–587 (2018).

  124. 124.

    Rainero, E. & Norman, J. C. Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. BioEssays 35, 523–532 (2013).

  125. 125.

    Wang, Y. et al. Formin-like 2 promotes β1-integrin trafficking and invasive motility downstream of PKCα. Dev. Cell 34, 475–483 (2015).

  126. 126.

    Hines, J. H., Abu-Rub, M. & Henley, J. R. Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG. Nat. Neurosci. 13, 829–837 (2010).

  127. 127.

    Palamidessi, A. et al. The GTPase-activating protein RN-tre controls focal adhesion turnover and cell migration. Curr. Biol. 23, 2355–2364 (2013).

  128. 128.

    Qu, F. et al. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 5, e20417 (2016).

  129. 129.

    Maekawa, M. et al. Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells. Biol. Open 6, 1707–1719 (2017).

  130. 130.

    Theret, L. et al. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 8, 78614–78632 (2017).

  131. 131.

    Wujak, L. et al. Low density lipoprotein receptor-related protein 1 couples β1 integrin activation to degradation. Cell. Mol. Life Sci. 75, 1671–1685 (2018).

  132. 132.

    Margiotta, A., Progida, C., Bakke, O. & Bucci, C. Rab7a regulates cell migration through Rac1 and vimentin. Biochim. Biophys. Acta Mol. Cell Res 1864, 367–381 (2017).

  133. 133.

    Das, L. et al. Novel regulation of integrin trafficking by Rab11–FIP5 in aggressive prostate cancer. Mol. Cancer Res. 16, 1319–1331 (2018).

  134. 134.

    Hülsbusch, N., Solis, G. P., Katanaev, V. L. & Stuermer, C. A. O. Reggie-1/flotillin-2 regulates integrin trafficking and focal adhesion turnover via Rab11a. Eur. J. Cell Biol. 94, 531–545 (2015).

  135. 135.

    Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017).

  136. 136.

    Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

  137. 137.

    Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

  138. 138.

    Picco, A. & Kaksonen, M. Quantitative imaging of clathrin-mediated endocytosis. Curr. Opin. Cell Biol. 53, 105–110 (2018).

  139. 139.

    Elkhatib, N. et al. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356, eaal4713 (2017).

  140. 140.

    Nordenfelt, P. et al. Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration. Nat. Commun. 8, 2047 (2017).

  141. 141.

    Martineau, M. et al. Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat. Commun. 8, 1412 (2017).

  142. 142.

    Wood, L. A., Larocque, G., Clarke, N. I., Sarkar, S. & Royle, S. J. New tools for hot-wiring clathrin-mediated endocytosis with temporal and spatial precision. J. Cell Biol. 216, 4351–4365 (2017).

Download references

Acknowledgements

We apologize to all colleagues whose work was not mentioned here owing to space limitations. Work in the authors’ laboratory was supported by funding from the Academy of Finland, an ERC Consolidator Grant (no. 615258), the Sigrid Juselius Foundation and the Cancer Society of Finland. J.Icha is a member of the Turku Collegium of Science and Medicine and recipient of the EMBO Long-Term Fellowship ALTF 405-2018.

Author information

Competing interests

The authors declare no competing interests.

Correspondence to Johanna Ivaska.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Fig. 1: Composition and function of the integrin family.
Fig. 2: Fine-tuning integrin endocytosis and recycling.
Fig. 3: Integrin trafficking in development.