Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turning back time with emerging rejuvenation strategies

Abstract

Ageing is associated with the functional decline of all tissues and a striking increase in many diseases. Although ageing has long been considered a one-way street, strategies to delay and potentially even reverse the ageing process have recently been developed. Here, we review four emerging rejuvenation strategies—systemic factors, metabolic manipulations, senescent cell ablation and cellular reprogramming—and discuss their mechanisms of action, cellular targets, potential trade-offs and application to human ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of emerging strategies for organismal rejuvenation and lifespan.
Fig. 2: Potential common mechanisms and target cells of the rejuvenation strategies.

Similar content being viewed by others

References

  1. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    CAS  PubMed  Google Scholar 

  4. Gems, D. & Partridge, L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu. Rev. Physiol. 75, 621–644 (2013).

    CAS  PubMed  Google Scholar 

  5. Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, C. W. et al. Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168, 775–788.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Longo, V. D. et al. Interventions to slow aging in humans: are we ready? Aging Cell 14, 497–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Conboy, M. J., Conboy, I. M. & Rando, T. A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525–530 (2013).

    CAS  PubMed  Google Scholar 

  14. de Keizer, P. L. The fountain of youth by targeting senescent cells? Trends Mol. Med. 23, 6–17 (2017).

    PubMed  Google Scholar 

  15. Mahmoudi, S. & Brunet, A. Aging and reprogramming: a two-way street. Curr. Opin. Cell Biol. 24, 744–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    CAS  PubMed  Google Scholar 

  17. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS  PubMed  Google Scholar 

  18. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baht, G. S. et al. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nat. Commun. 6, 7131 (2015).

    CAS  PubMed  Google Scholar 

  20. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, L. K. et al. β2-Microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat. Med. 21, 932–937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Castellano, J. M. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    CAS  PubMed  Google Scholar 

  29. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J. & Rando, T. A. A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2, 50–59 (2008).

    CAS  PubMed  Google Scholar 

  30. Yousef, H. et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6, 11959–11978 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Baruch, K. et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346, 89–93 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Poggioli, T. et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ. Res. 118, 29–37 (2016).

    CAS  PubMed  Google Scholar 

  33. Smith, S. C. et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ. Res. 117, 926–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Egerman, M. A. et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22, 164–174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, J. E. et al. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 22, 1522–1530 (2018).

    CAS  PubMed  Google Scholar 

  36. Elabd, C. et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun. 5, 4082 (2014).

    CAS  PubMed  Google Scholar 

  37. Lee, H. J., Macbeth, A. H., Pagani, J. H. & Young, W. S. 3rd Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Freitas-Rodriguez, S., Rodriguez, F. & Folgueras, A. R. GDF11 administration does not extend lifespan in a mouse model of premature aging. Oncotarget 7, 55951–55956 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Shytikov, D., Balva, O., Debonneuil, E., Glukhovskiy, P. & Pishel, I. Aged mice repeatedly injected with plasma from young mice: a survival study. Biores. Open Access 3, 226–232 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Kapahi, P., Kaeberlein, M. & Hansen, M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res. Rev. 39, 3–14 (2017).

    PubMed  Google Scholar 

  41. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    PubMed  Google Scholar 

  42. Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rippe, C. et al. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9, 304–312 (2010).

    CAS  PubMed  Google Scholar 

  44. Meidenbauer, J. J., Ta, N. & Seyfried, T. N. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr. Metab. 11, 23 (2014).

    Google Scholar 

  45. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    CAS  PubMed  Google Scholar 

  47. Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Neff, F. et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272–3291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Newman, J. C. & Verdin, E. β-Hydroxybutyrate: a signaling metabolite. Annu. Rev. Nutr. 37, 51–76 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Edwards, C. et al. d-β-hydroxybutyrate extends lifespan in C. elegans. Aging 6, 621–644 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gocmez, S. S. et al. Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol. Learn. Mem. 131, 131–136 (2016).

    CAS  PubMed  Google Scholar 

  53. Kim, E. N. et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging 10, 83–99 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 8, 157–168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    CAS  PubMed  Google Scholar 

  56. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  PubMed  Google Scholar 

  57. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Google Scholar 

  58. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  PubMed  Google Scholar 

  59. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  66. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    CAS  PubMed  Google Scholar 

  72. Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hall, B. M. et al. p16Ink4a and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    CAS  PubMed  Google Scholar 

  76. Liu, Y. et al. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8, 439–448 (2009).

    CAS  PubMed  Google Scholar 

  77. Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators p16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 150, 1933–1939 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Linehan, E. & Fitzgerald, D. C. Ageing and the immune system: focus on macrophages. Eur. J. Microbiol. Immunol. 5, 14–24 (2015).

    CAS  Google Scholar 

  81. Villanueva, M. T. Ageing: old bone removal. Nat. Rev. Drug Discov. 16, 456 (2017).

    CAS  PubMed  Google Scholar 

  82. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schoenwaelder, S. M. et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118, 1663–1674 (2011).

    CAS  PubMed  Google Scholar 

  84. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006).

    CAS  PubMed  Google Scholar 

  87. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).

    CAS  PubMed  Google Scholar 

  88. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    CAS  PubMed  Google Scholar 

  90. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  93. Israel, M. A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, G. H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472, 221–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Suhr, S. T. et al. Mitochondrial rejuvenation after induced pluripotency. PLoS ONE 5, e14095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lo Sardo, V. et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35, 69–74 (2017).

    CAS  PubMed  Google Scholar 

  101. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    CAS  PubMed  Google Scholar 

  102. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    PubMed  Google Scholar 

  103. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).

    CAS  PubMed  Google Scholar 

  104. Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell 17, e12711 (2018).

    Google Scholar 

  105. Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Falick Michaeli, T. et al. The rejuvenating effect of pregnancy on muscle regeneration. Aging Cell 14, 698–700 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Papp, B. & Plath, K. Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324–1343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Iglesias-Bartolome, R. et al. mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis. Cell Stem Cell 11, 401–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Demidenko, Z. N. et al. Rapamycin decelerates cellular senescence. Cell Cycle 8, 1888–1895 (2009).

    CAS  PubMed  Google Scholar 

  112. Soria-Valles, C. et al. NF-κB activation impairs somatic cell reprogramming in ageing. Nat. Cell Biol. 17, 1004–1013 (2015).

    CAS  PubMed  Google Scholar 

  113. Brady, J. J. et al. Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-seq. Nat. Cell Biol. 15, 1244–1252 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, J. et al. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 151, 547–558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chiche, A. et al. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20, 407–414.e4 (2017).

    CAS  PubMed  Google Scholar 

  116. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    CAS  PubMed  Google Scholar 

  117. Youm, Y. H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Strong, R. et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7, 641–650 (2008).

    CAS  PubMed  Google Scholar 

  119. Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Gasparini, L., Ongini, E. & Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem. 91, 521–536 (2004).

    CAS  PubMed  Google Scholar 

  121. Wan, Q. L., Zheng, S. Q., Wu, G. S. & Luo, H. R. Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp. Gerontol. 48, 499–506 (2013).

    CAS  PubMed  Google Scholar 

  122. Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, M. et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387–36394 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Conboy, I. M., Conboy, M. J. & Rebo, J. Systemic problems: a perspective on stem cell aging and rejuvenation. Aging 7, 754–765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tran, D. et al. Insulin-like growth factor-1 regulates the SIRT1–p53 pathway in cellular senescence. Aging Cell 13, 669–678 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Han, X. et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell 15, 416–427 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu, Y. et al. Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat. Cell Biol. 17, 715–725 (2015).

    CAS  PubMed  Google Scholar 

  130. Chen, T. et al. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10, 908–911 (2011).

    CAS  PubMed  Google Scholar 

  131. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  PubMed  Google Scholar 

  134. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    CAS  PubMed  Google Scholar 

  135. Chandra, T. et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 47, 203–214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Foran, E. et al. Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol. Cancer Res. 8, 471–481 (2010).

    CAS  PubMed  Google Scholar 

  137. Hodge, D. R. et al. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J. Biol. Chem. 276, 39508–39511 (2001).

    CAS  PubMed  Google Scholar 

  138. Kim, C. H. et al. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell 15, 1074–1081 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hahn, O. et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 18, 56 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    CAS  PubMed  Google Scholar 

  141. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kang, C. et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Gewirtz, D. A. Autophagy and senescence: a partnership in search of definition. Autophagy 9, 808–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    CAS  PubMed  Google Scholar 

  146. Leeman, D. S. et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277–1283 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Prigione, A. et al. Mitochondrial-associated cell death mechanisms are reset to an embryonic-like state in aged donor-derived iPS cells harboring chromosomal aberrations. PLoS ONE 6, e27352 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Passos, J. F. et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 6, 347 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. Passos, J. F. et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 5, e110 (2007).

    PubMed  PubMed Central  Google Scholar 

  150. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    CAS  PubMed  Google Scholar 

  151. Lakowski, B. & Hekimi, S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010–1013 (1996).

    CAS  PubMed  Google Scholar 

  152. Liu, X. et al. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev. 19, 2424–2434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002).

    CAS  PubMed  Google Scholar 

  154. Owusu-Ansah, E., Song, W. & Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699–712 (2013).

    CAS  PubMed  Google Scholar 

  155. Copeland, J. M. et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol. 19, 1591–1598 (2009).

    CAS  PubMed  Google Scholar 

  156. Fatt, M. et al. Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Rep. 5, 988–995 (2015).

    CAS  Google Scholar 

  157. Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. & Rossi, D. J. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37–50 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Poulos, M. G. et al. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J. Clin. Invest. 127, 4163–4178 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. Sepulveda, J. C. et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32, 1865–1877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fontana, L. et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell 17, e12746 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Banito, A. et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23, 2134–2139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    PubMed  Google Scholar 

  166. Mak, S. S., Moriyama, M., Nishioka, E., Osawa, M. & Nishikawa, S. Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev. Biol. 291, 144–153 (2006).

    CAS  PubMed  Google Scholar 

  167. McDonnell, T. J. et al. bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  168. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    CAS  PubMed  Google Scholar 

  169. Bernardes de Jesus, B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Matheu, A. et al. Anti-aging activity of the Ink4/Arf locus. Aging Cell 8, 152–161 (2009).

    CAS  PubMed  Google Scholar 

  171. Gonzalez-Navarro, H. et al. Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12, 102–111 (2013).

    CAS  PubMed  Google Scholar 

  172. Carrasco-Garcia, E., Arrizabalaga, O., Serrano, M., Lovell-Badge, R. & Matheu, A. Increased gene dosage of Ink4/Arf and p53 delays age-associated central nervous system functional decline. Aging Cell 14, 710–714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    PubMed  PubMed Central  Google Scholar 

  174. Luo, L. et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp. Gerontol. 48, 427–436 (2013).

    CAS  PubMed  Google Scholar 

  175. Valdez, G. et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc. Natl Acad. Sci. USA 107, 14863–14868 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Valenzano, D. R., Terzibasi, E., Cattaneo, A., Domenici, L. & Cellerino, A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5, 275–278 (2006).

    CAS  PubMed  Google Scholar 

  177. Zhang, B. et al. Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Rep. 11, 1414–1424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lee, S. J. & Kenyon, C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr. Biol. 19, 715–722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    CAS  PubMed  Google Scholar 

  180. Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6, e27014 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Zhang, Y. et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl Med. 9, eaai8700 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Singh, M. et al. Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study. J. Frailty Aging 5, 204–207 (2016).

    CAS  PubMed  Google Scholar 

  184. Gandini, S. et al. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. 7, 867–885 (2014).

    CAS  Google Scholar 

  185. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    CAS  PubMed  Google Scholar 

  186. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Abbott, A. Infusions of young blood tested in patients with dementia. Nature News (1 November 2017).

  188. Mahmoudi, S. & Brunet, A. Bursts of reprogramming: a path to extend lifespan? Cell 167, 1672–1674 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those colleagues whose work we could not cite owing to space limitations. We thank C. Kenyon, P. Singh, J. Vos, M. Quarta and A. Colville for helpful feedback on the manuscript. This work was supported by the Stanford Graduate Fellowship (L.X.) and a generous philanthropic gift from M. Barakett and T. Barakett.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Brunet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Extended summary of studies testing rejuvenation interventions at midlife and later in wild type mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, S., Xu, L. & Brunet, A. Turning back time with emerging rejuvenation strategies. Nat Cell Biol 21, 32–43 (2019). https://doi.org/10.1038/s41556-018-0206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0206-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing