Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BAP1 links metabolic regulation of ferroptosis to tumour suppression

Abstract

The roles and regulatory mechanisms of ferroptosis (a non-apoptotic form of cell death) in cancer remain unclear. The tumour suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear deubiquitinating enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here, integrated transcriptomic, epigenomic and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers. Functional studies reveal that BAP1 decreases H2Aub occupancy on the SLC7A11 promoter and represses SLC7A11 expression in a deubiquitinating-dependent manner, and that BAP1 inhibits cystine uptake by repressing SLC7A11 expression, leading to elevated lipid peroxidation and ferroptosis. Furthermore, we show that BAP1 inhibits tumour development partly through SLC7A11 and ferroptosis, and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis. Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumour suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide analyses link BAP1 to metabolism-related biological processes.
Fig. 2: Cancer genomic analyses link SLC7A11 to BAP1-mediated tumour suppression in human cancers.
Fig. 3: BAP1 suppresses SLC7A11 expression and reduces H2Aub occupancy on the SLC7A11 promoter.
Fig. 4: BAP1 suppresses SLC7A11-mediated cystine uptake and promotes ferroptosis.
Fig. 5: BAP1 promotes ferroptosis through SLC7A11.
Fig. 6: BAP1 inhibits tumour development partly through SLC7A11 and ferroptosis.
Fig. 7: Cancer-associated BAP1 mutations are defective in regulating SLC7A11 and ferroptosis.

Similar content being viewed by others

References

  1. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Green, D. R., Galluzzi, L. & Kroemer, G. Cell biology. Metabolic control of cell death. Science 345, 1250256 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell. Biol. 17, 351–359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  7. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, J. Y. & Dixon, S. J. Mechanisms of ferroptosis. Cell Mol. Life Sci. 73, 2195–2209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, W. S. & Stockwell, B. R. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26, 165–176 (2016).

    CAS  PubMed  Google Scholar 

  11. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim, J. C. & Donaldson, P. J. Focus on molecules: the cystine/glutamate exchanger (System x(c)(-)). Exp. Eye Res. 92, 162–163 (2011).

    CAS  PubMed  Google Scholar 

  13. Conrad, M. & Sato, H. The oxidative stress-inducible cystine/glutamate antiporter, System x(c)(-): cystine supplier and beyond. Amino Acids 42, 231–246 (2012).

    CAS  PubMed  Google Scholar 

  14. Koppula, P., Zhang, Y., Zhuang, L. & Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 38, 12 (2018).

    Google Scholar 

  15. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell. Biol. 16, 1180–1191 (2014).

    CAS  PubMed  Google Scholar 

  17. Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002).

    CAS  PubMed  Google Scholar 

  18. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    CAS  PubMed  Google Scholar 

  19. Carbone, M. et al. BAP1 and cancer. Nat. Rev. Cancer 13, 153–159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji, Z. et al. The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 42, 6232–6242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baymaz, H. I. et al. MBD5 and MBD6 interact with the human PR–DUB complex through their methyl-CpG-binding domain. Proteomics 14, 2179–2189 (2014).

    CAS  PubMed  Google Scholar 

  23. Yu, H. et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol. Cell. Biol. 30, 5071–5085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Misaghi, S. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol. Cell. Biol. 29, 2181–2192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A. & Dutta, A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J. Biol. Chem. 284, 34179–34188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kallin, E. M. et al. Genome-wide uH2A localization analysis highlights Bmi1-dependent deposition of the mark at repressed genes. PLoS Genet. 5, e1000506 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Weake, V. M. & Workman, J. L. Histone ubiquitination: triggering gene activity. Mol. Cell 29, 653–663 (2008).

    CAS  PubMed  Google Scholar 

  29. Wang, H. et al. Role of histone H2A ubiquitination in polycomb silencing. Nature 431, 873–878 (2004).

    CAS  PubMed  Google Scholar 

  30. Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bott, M. et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat. Genet. 43, 668–672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai, F. et al. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response. Proc. Natl Acad. Sci. USA 114, 3192–3197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cancer Genome Atlas Research Network Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  36. Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fishbein, L. et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31, 181–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cancer Genome Atlas Research Network Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Google Scholar 

  39. Cancer Genome Atlas Research Network Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Google Scholar 

  40. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, S. J., Ou, Y., Jiang, L. & Gu, W. Ferroptosis: a missing puzzle piece in the p53 blueprint? Mol. Cell. Oncol. 3, e1046581 (2016).

    PubMed  Google Scholar 

  42. Vissers, J. H., Nicassio, F., van Lohuizen, M., Di Fiore, P. P. & Citterio, E. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Divis. 3, 8 (2008).

    Google Scholar 

  43. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  44. Hauri, S. et al. A high-density map for navigating the human polycomb complexome. Cell Rep. 17, 583–595 (2016).

    CAS  PubMed  Google Scholar 

  45. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Young, O., Crotty, T., O’Connell, R., O’Sullivan, J. & Curran, A. J. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia. Head Neck 32, 750–756 (2010).

    PubMed  Google Scholar 

  47. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  49. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell. Biol. 14, 276–286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Okino, Y., Machida, Y., Frankland-Searby, S. & Machida, Y. J. BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J. Biol. Chem. 290, 1580–1591 (2015).

    PubMed  Google Scholar 

  52. Schuettengruber, B. & Cavalli, G. The DUBle life of polycomb complexes. Dev. Cell 18, 878–880 (2010).

    CAS  PubMed  Google Scholar 

  53. Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, X. et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat. Cell. Biol. 18, 431–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koppula, P., Zhang, Y., Shi, J., Li, W. & Gan, B. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J. Biol. Chem. 292, 14240–14249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, X. & Gan, B. lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1. Cell Cycle 15, 3471–3481 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin, A. et al. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene 33, 3183–3194 (2014).

    CAS  PubMed  Google Scholar 

  58. Lee, H. et al. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. Oncotarget 7, 19134–19146 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Lin, A. et al. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacological inhibition of the PI3K-AKT pathway. Cancer Res. 74, 1682–1693 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl Acad. Sci. USA 105, 19384–19389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gan, B., Yoo, Y. & Guan, J. L. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth. J. Biol. Chem. 281, 37321–37329 (2006).

    CAS  PubMed  Google Scholar 

  63. Gan, B., Melkoumian, Z. K., Wu, X., Guan, K. L. & Guan, J. L. Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control. J. Cell Biol. 170, 379–389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, X. et al. Proteomic analysis of the human tankyrase protein interaction network reveals its role in pexophagy. Cell Rep. 20, 737–749 (2017).

    CAS  PubMed  Google Scholar 

  65. Gan, B. et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 18, 472–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gan, B. et al. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways. J. Cell Biol. 175, 121–133 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).

    PubMed  Google Scholar 

  69. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank X. Shi for helpful discussion and suggestions and A. Ninetto from the Department of Scientific Publications at The University of Texas MD Anderson Cancer Center for manuscript editing. This research was supported by the Andrew Sabin Family Fellow Award, the Sister Institution Network Fund, an Institutional Research Grant from The University of Texas MD Anderson Cancer Center, Anna Fuller Fund (to B.G.) and grants from the National Institutes of Health (R01CA181196 to B.G.; R01HG007538 and R01CA193466 to W.L.; R01CA172724 to P.H.). B.G. is an Ellison Medical Foundation New Scholar and an Andrew Sabin Family Fellow. Y.Z. and P.K. are Scholars at the Center for Cancer Epigenetics at The University of Texas MD Anderson Cancer Center. P.K. is supported by a CPRIT Research Training Grant (RP170067). This research was also supported by a National Institutes of Health Cancer Center Support Grant P30CA016672 to The University of Texas MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. performed most of the experiments shown in Figs. 3–7 with assistance from X. Liu, P.K., K.S., H.L., L.Z. and Z.X. J.S. conducted all the computational analyses shown in Figs. 1 and 2. F.L. and G.C. helped with cystine uptake experiments. W.Y. helped with the 4HNE IHC analysis. Z.G. conducted tandem affinity purification to identify BAP1-associated proteins. X.Li analysed BAP1-associated proteins. B.G. and W.L. supervised the study. Y.Z. and B.G. designed the experiments and wrote the manuscript. J.C., M.H. and P.H. helped with discussion and interpretation of results. All authors commented on the manuscript.

Corresponding authors

Correspondence to Wei Li or Boyi Gan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Table legends

Reporting Summary

Supplementary Table 1

The list of 354 upregulated and 187 downregulated genes with decreased H2Aub levels on restoration of BAP1 expression in UMRC6 cells, and the gene ontology analysis of these genes.

Supplementary Table 2

Cancer genomic analysis of BAP1 target genes in kidney clear cell carcinoma.

Supplementary Table 3

List of cancer-associated BAP1 mutants.

Supplementary Table 4

Sequence of oligonucleotides used in this study.

Supplementary Table 5

Statistics source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shi, J., Liu, X. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20, 1181–1192 (2018). https://doi.org/10.1038/s41556-018-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0178-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer