Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and impact of altered tumour mechanics

A Publisher Correction to this article was published on 10 July 2018

This article has been updated

Abstract

The physical characteristics of tumours are intricately linked to the tumour phenotype and difficulties during treatment. Many factors contribute to the increased stiffness of tumours; from increased matrix deposition, matrix remodelling by forces from cancer cells and stromal fibroblasts, matrix crosslinking, increased cellularity, and the build-up of both solid and interstitial pressure. Increased stiffness then feeds back to increase tumour invasiveness and reduce therapy efficacy. Increased understanding of this interplay is offering new therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of mechanobiology in tumours.
Fig. 2: Schematic view of cell-mediated matrix remodelling.
Fig. 3: Mechanisms of mechanotransduction.

Similar content being viewed by others

Change history

  • 10 July 2018

    In the version of this Review originally published, owing to a technical error the text ‘However, given the multitude’ was incorrectly introduced after the sentence beginning ‘The transition to a mesenchymal state is characterized...’. This has now been amended in all online versions of the Review.

References

  1. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. 2nd edn, (Springer-Verlag, New York, NY, 1993).

    Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  3. Flanagan, L. A., Ju, Y. E., Marg, B., Osterfield, M. & Janmey, P. A. Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002).

    PubMed  PubMed Central  Google Scholar 

  4. Patel, P. N., Smith, C. K. & Patrick, C. W. Jr. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue. J. Biomed. Mater. Res. 73A, 313–319 (2005).

    CAS  Google Scholar 

  5. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  PubMed  Google Scholar 

  6. Mahoney, L. & Csima, A. Clinical screening for breast cancer. N. Engl. J. Med. 306, 546 (1982).

    CAS  PubMed  Google Scholar 

  7. Janmey, P. A. & Miller, R. T. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124, 9–18 (2011).

    CAS  PubMed  Google Scholar 

  8. Hoyt, K. et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4, 213–225 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Garra, B. S. et al. Elastography of breast lesions: initial clinical results. Radiology 202, 79–86 (1997).

    CAS  PubMed  Google Scholar 

  10. Muthupillai, R. & Ehman, R. L. Magnetic resonance elastography. Nat. Med. 2, 601–603 (1996).

    CAS  PubMed  Google Scholar 

  11. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018).

    CAS  PubMed  Google Scholar 

  16. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Padua, D. & Massague, J. Roles of TGFβ in metastasis. Cell Res. 19, 89–102 (2009).

    CAS  PubMed  Google Scholar 

  18. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakaoka, H. et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264, 1593–1596 (1994).

    CAS  PubMed  Google Scholar 

  20. Lee, J. et al. Tissue transglutaminase mediated tumor–stroma interaction promotes pancreatic cancer progression. Clin. Cancer Res. 21, 4482–4493 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    CAS  PubMed  Google Scholar 

  22. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    CAS  PubMed  Google Scholar 

  23. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  PubMed  Google Scholar 

  24. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19, 776–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    CAS  PubMed  Google Scholar 

  27. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  PubMed  Google Scholar 

  28. Delanoe-Ayari, H., Rieu, J. P. & Sano, M. 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys. Rev. Lett. 105, 248103 (2010).

    CAS  PubMed  Google Scholar 

  29. Madsen, C. D. et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 16, 1394–1408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohammadi, H., Arora, P. D., Simmons, C. A., Janmey, P. A. & McCulloch, C. A. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation. J. R. Soc. Interface 12, 20141074 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Provenzano, P. P. et al. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    PubMed  PubMed Central  Google Scholar 

  32. Willis, A. L., Sabeh, F., Li, X. Y. & Weiss, S. J. Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J. Microsc. 251, 250–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong, C., Hu, X. & Dinu, C. Z. Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int. J. Nanomed. 11, 2107–2118 (2016).

    CAS  Google Scholar 

  34. Bausch, A. R., Moller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wendling, S., Oddou, C. & Isabey, D. Stiffening response of a cellular tensegrity model. J. Theor. Biol. 196, 309–325 (1999).

    CAS  PubMed  Google Scholar 

  36. Janmey, P. A. et al. Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry 27, 8218–8227 (1988).

    CAS  PubMed  Google Scholar 

  37. Rigato, A., Miyagi, A., Scheuring, S. & Rico, F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat. Phys. 13, 771–775 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    CAS  PubMed  Google Scholar 

  39. Lekka, M. et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28, 312–316 (1999).

    CAS  PubMed  Google Scholar 

  40. Remmerbach, T. W. et al. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009).

    CAS  PubMed  Google Scholar 

  41. Xu, W. et al. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PloS ONE 7, e46609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl. Acad. Sci. USA 108, 4714–4719 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Malinverno, C. et al. Endocytic reawakening of motility in jammed epithelia. Nat. Mater. 16, 587–596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chauhan, V. P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Skalak, R., Zargaryan, S., Jain, R. K., Netti, P. A. & Hoger, A. Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34, 889–914 (1996).

    CAS  PubMed  Google Scholar 

  48. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 109, 15101–15108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    CAS  PubMed  Google Scholar 

  51. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).

    CAS  PubMed  Google Scholar 

  52. Stylianopoulos, T. et al. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73, 3833–3841 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastas-. Rev. 28, 113–127 (2009).

    Google Scholar 

  54. Ross, T. D. et al. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25, 613–618 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Roca-Cusachs, P. et al. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. USA 110, E1361–E1370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shifrin, Y., Arora, P. D., Ohta, Y., Calderwood, D. A. & McCulloch, C. A. The role of FilGAP–filamin A interactions in mechanoprotection. Mol. Biol. Cell 20, 1269–1279 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mouw, J. K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harunaga, J. S. & Yamada, K. M. Cell–matrix adhesions in 3D. Matrix Biol. 30, 363–368 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  PubMed  Google Scholar 

  65. Lamar, J. M. et al. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 109, E2441–E2450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei, S. C. et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Foster, C. T., Gualdrini, F. & Treisman, R. Mutual dependence of the MRTF–SRF and YAP–TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev. 31, 2361–2375 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Collard, L. et al. Nuclear actin and myocardin-related transcription factors control disuse muscle atrophy through regulation of Srf activity. J. Cell Sci. 127, 5157–5163 (2014).

    PubMed  Google Scholar 

  69. Ege, et al. Quantitative analysis reveals that actin and Src-family kinases regulate nuclear YAP1 and its export. Cell Systems 6, 1–17 (2018).

    Google Scholar 

  70. Hong, W. & Guan, K. L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin. Cell Dev. Biol. 23, 785–793 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nasrollahi, S. et al. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146, 146–155 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang, S. F. et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl. Acad. Sci. USA 105, 3927–3932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, C. et al. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line. Sci. Rep. 5, 8364 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Bagriantsev, S. N., Gracheva, E. O. & Gallagher, P. G. Piezo proteins: regulators of mechanosensation and other cellular processes. J. Biol. Chem. 289, 31673–31681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction — the function and regulation of Piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).

    PubMed  Google Scholar 

  77. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    CAS  PubMed  Google Scholar 

  78. Enyedi, B. & Niethammer, P. A case for the nuclear membrane as a mechanotransducer. Cell. Mol. Bioeng. 9, 247–251 (2016).

    CAS  PubMed  Google Scholar 

  79. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16, 376–381 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pogoda, K. et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16, 075002 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Enyedi, B., Jelcic, M. & Niethammer, P. the cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165, 1160–1170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    CAS  PubMed  Google Scholar 

  83. Moroishi, T. et al. The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525–1539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McGrail, D. J., Kieu, Q. M. & Dawson, M. R. The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho–ROCK pathway. J. Cell Sci. 127, 2621–2626 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Baker, E. L., Bonnecaze, R. T. & Zaman, M. H. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97, 1013–1021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Turley, E. A., Veiseh, M., Radisky, D. C. & Bissell, M. J. Mechanisms of disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression? Nat. Clin. Pract. Oncol. 5, 280–290 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    CAS  PubMed  Google Scholar 

  90. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bordeleau, F. et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc. Natl. Acad. Sci. USA 114, 492–497 (2017).

    CAS  PubMed  Google Scholar 

  92. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. Bergert, M. et al. Force transmission during adhesion-independent migration. Nat. Cell Biol. 17, 524–529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tozluoglu, M. et al. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15, 751–762 (2013).

    CAS  PubMed  Google Scholar 

  95. Petrie, R. J., Koo, H. & Yamada, K. M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062–1065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Petrie, R. J., Gavara, N., Chadwick, R. S. & Yamada, K. M. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197, 439–455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157–1161 (2016).

    CAS  PubMed  Google Scholar 

  99. Park, J. A., Atia, L., Mitchel, J. A., Fredberg, J. J. & Butler, J. P. Collective migration and cell jamming in asthma, cancer and development. J. Cell Sci. 129, 3375–3383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Irianto, J. et al. Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27, 4011–4020 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    CAS  PubMed  Google Scholar 

  103. Shah, P., Wolf, K. & Lammerding, J. Bursting the bubble — nuclear envelope rupture as a path to genomic instability? Trends Cell Biol. 27, 546–555 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pfeifer, C. R., Alvey, C. M., Irianto, J. & Discher, D. E. Genome variation across cancers scales with tissue stiffness — an invasion–mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Takaki, T. et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat. Commun. 8, 16013 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).

    CAS  PubMed  Google Scholar 

  108. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Stylianopoulos, T. & Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 110, 18632–18637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang, Q. et al. Biodistribution of cisplatin revealed by imaging mass cytometry identifies extensive collagen binding in tumor and normal tissues. Sci. Rep. 6, 36641 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    CAS  PubMed  Google Scholar 

  115. Li, R. K. et al. Lysyl oxidase-like 4 (LOXL4) promotes proliferation and metastasis of gastric cancer via FAK/Src pathway. J. Cancer Res. Clin. Oncol. 141, 269–281 (2015).

    CAS  PubMed  Google Scholar 

  116. Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Contente, S., Kenyon, K., Rimoldi, D. & Friedman, R. M. Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science 249, 796–798 (1990).

    CAS  PubMed  Google Scholar 

  118. Kenyon, K. et al. Lysyl oxidase and rrg messenger RNA. Science 253, 802 (1991).

    CAS  PubMed  Google Scholar 

  119. Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).

    CAS  PubMed  Google Scholar 

  120. Shimokawa, H. et al. Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J. Cardiovasc. Pharmacol. 40, 751–761 (2002).

    CAS  PubMed  Google Scholar 

  121. Hartmann, S., Ridley, A. J. & Lutz, S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front. Pharmacol. 6, 276 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Aikawa, T., Gunn, J., Spong, S. M., Klaus, S. J. & Korc, M. Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol. Cancer Ther. 5, 1108–1116 (2006).

    CAS  PubMed  Google Scholar 

  125. Marelli, U. K., Rechenmacher, F., Sobahi, T. R., Mas-Moruno, C. & Kessler, H. Tumor Targeting via Integrin Ligands. Front Oncol. 3, 222 (2013).

    PubMed  PubMed Central  Google Scholar 

  126. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100–1108 (2014).

    CAS  PubMed  Google Scholar 

  127. Mas-Moruno, C., Rechenmacher, F. & Kessler, H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med. Chem. 10, 753–768 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Golubovskaya, V. M. Targeting FAK in human cancer: from finding to first clinical trials. Front. Biosci. (Landmark Ed.) 19, 687–706 (2014).

    CAS  Google Scholar 

  129. Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

    CAS  PubMed  Google Scholar 

  131. Perentes, J. Y. et al. In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat. Methods 6, 143–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Eikenes, L., Tufto, I., Schnell, E. A., Bjorkoy, A. & De Lange Davies, C. Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res. 30, 359–368 (2010).

    CAS  PubMed  Google Scholar 

  133. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    CAS  PubMed  Google Scholar 

  135. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  136. Chan, D. A. et al. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell 15, 527–538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    CAS  PubMed  Google Scholar 

  138. Wong, P. P. et al. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell 27, 123–137 (2015).

    CAS  PubMed  Google Scholar 

  139. Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl. Med. 10, eaao0475 (2018).

    PubMed  Google Scholar 

  140. Garteiser, P. et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur. Radiol. 22, 2169–2177 (2012).

    PubMed  Google Scholar 

  141. Panagiotaki, E. et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014).

    CAS  PubMed  Google Scholar 

  142. Insana, M. F., Pellot-Barakat, C., Sridhar, M. & Lindfors, K. K. Viscoelastic imaging of breast tumor microenvironment with ultrasound. J. Mammary Gland Biol. Neoplasia 9, 393–404 (2004).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank lab members for critical reading. E.S. is funded by the Francis Crick Institute, which receives itscore funding from Cancer Research UK (FC001144), the UK Medical Research Council (FC001144), andthe Wellcome Trust (FC001144). H.M. is funded by CIHR fellowship MFE-146796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sahai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 20, 766–774 (2018). https://doi.org/10.1038/s41556-018-0131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0131-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer