Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted contributions of mitochondria to cellular metabolism

Abstract

Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondria are the powerhouse of the cell.
Fig. 2: Mitochondria are biosynthetic hubs.
Fig. 3: Mitochondria balance redox equivalents.
Fig. 4: Mitochondria orchestrate waste management.

Similar content being viewed by others

References

  1. Castresana, J. & Saraste, M. Evolution of energetic metabolism: the respiration-early hypothesis. Trends Biochem. Sci. 20, 443–448 (1995).

    CAS  PubMed  Google Scholar 

  2. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    CAS  PubMed  Google Scholar 

  3. Sagan, L. On the origin of mitosing cells. J. Theoret. Biol 14, 225–274 (1966).

    Google Scholar 

  4. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).

    CAS  PubMed  Google Scholar 

  5. Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166, 555–566 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Sazanov, L. A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol Cell Biol. 16, 375–388 (2015).

    CAS  PubMed  Google Scholar 

  8. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. & Walker, J. E. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl Acad Sci. USA 107, 16823–16827 (2010).

    CAS  PubMed  Google Scholar 

  9. DiMauro, S. & Schon, E. A. Mitochondrial respiratory-chain diseases. New Eng. J. Med. 348, 2656–2668 (2003).

    CAS  PubMed  Google Scholar 

  10. Dimauro, S. & Rustin, P. A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim. Biophys. acta 1159–1167, 2009 (1792).

    Google Scholar 

  11. Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry. (W.H. Freeman and company, New York, 2005).

    Google Scholar 

  12. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  15. Herzig, S. et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337, 93–96 (2012).

    CAS  PubMed  Google Scholar 

  16. Bricker, D. K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    CAS  PubMed  Google Scholar 

  18. Connett, R. J., Honig, C. R., Gayeski, T. E. J. & Brooks, G. A. Defining hypoxia: a systems view of VO2, glycolysis, energetics and intracellular PO2. J. Appl. Physiol. 68, 833–842 (1990).

    CAS  PubMed  Google Scholar 

  19. Sherratt, H. S. A. The metabolism of the small intestine: oxygen uptake and L-lactate production along the length of the small intestine of rat and guinea pig. Comp. Biochem. Physiol 24, 745–761 (1968).

    CAS  PubMed  Google Scholar 

  20. Gerich, J. E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med. 27, 136–142 (2010).

    CAS  PubMed  Google Scholar 

  21. Diaz-Ruiz, R., Rigoulet, M. & Devin, A. The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. acta 1807, 568–576 (2011).

    CAS  PubMed  Google Scholar 

  22. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell 56, 400–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Divakaruni, A. S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl Acad. Sci. USA 110, 5422–5427 (2013).

    CAS  PubMed  Google Scholar 

  24. Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Olson, K. A., Schell, J. C. & Rutter, J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem. Sci. 41, 219–230 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Metallo, C. M., Walther, J. L. & Stephanopoulos, G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J. Biotech. 144, 167–174 (2009).

    CAS  Google Scholar 

  27. Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Patel, K. P., O’Brien, T. W., Subramony, S. H., Shuster, J. & Stacpoole, P. W. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metab. 105, 34–43 (2012).

    CAS  PubMed  Google Scholar 

  29. Christen, S. et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 17, 837–848 (2016).

    CAS  PubMed  Google Scholar 

  30. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. DeBerardinis, R. J. & Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    CAS  PubMed  Google Scholar 

  32. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    CAS  PubMed  Google Scholar 

  33. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941–954 (2006).

    CAS  PubMed  Google Scholar 

  34. Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vacanti, N. M. et al. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell 56, 425–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. 105, 18782–18787 (2008).

    CAS  PubMed  Google Scholar 

  38. Wang, J. B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin, L., Alesi, G. N. & Kang, S. Glutaminolysis as a target for cancer therapy. Oncogene 35, 3619–3625 (2016).

    CAS  PubMed  Google Scholar 

  40. Muir, A. et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. eLife 6, e27713 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Bhutia, Y. D. & Ganapathy, V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim. Biophys. acta 1863, 2531–2539 (2016).

    CAS  PubMed  Google Scholar 

  42. Sastrasinh, A. & Sastrasinh, M. Glutamine transport in submitochondrial particles. Am. J. Physiol. 257, 1050–1058 (1989).

    Google Scholar 

  43. Indiveri, C., Abruzzo, G., Stipani, I. & Palmieri, F. Identification and purification of the reconstitutively active glutamine carrier from rat kidney mitochondria. Biochem. J. 333, 285–290 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brosnan, J. T. & Brosnan, M. E. Branched-chain amino acids: metabolism, physiological function and application. J. Nutr. 136, 207–211 (2006).

    Google Scholar 

  45. Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M. & Harris, R. A. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 134, 1583–1587 (2004).

    Google Scholar 

  47. Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

    CAS  PubMed  Google Scholar 

  48. Blackburn, P. R. et al. Maple syrup urine disease: mechanisms and management. Appl. Clin. Genet. 10, 57–66 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rohrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    PubMed  Google Scholar 

  50. McGarry, J. D. & Brown, N. F. The mitochondrial carnitine palmitoyltransferase system from concept to molecular analysis. Eur. J. Biochem. 244, 1–14 (1997).

    CAS  PubMed  Google Scholar 

  51. Houten, S. M. & Wanders, R. J. A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruderman, N. & Prentki, M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 3, 340–351 (2004).

    CAS  PubMed  Google Scholar 

  54. Munday, M. R. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 30, 1059–1063 (2002).

    CAS  PubMed  Google Scholar 

  55. German, N. J. et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2. Mol. Cell 63, 1006–1020 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Svensson, R. U. et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108–1119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia, D. & Shaw, R. J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell 66, 789–800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Serra, D., Mera, P., Malandrino, M. I., Mir, J. F. & Herrero, L. Mitochondrial fatty acid oxidation in obesity. Antioxid. Redox Sign. 19, 269–284 (2013).

    CAS  Google Scholar 

  64. Ahn, C. S. & Metallo, C. M. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3, 1 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Walker, M. A., Volpi, S., Sims, K. B., Walter, J. E. & Traggiai, E. Powering the immune system: mitochondria in immune function and deficiency. J. Immunol. Res. 2014, 164309 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).

    CAS  PubMed  Google Scholar 

  67. Tibbetts, A. S. & Appling, D. R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutrit. 30, 57–81 (2010).

    CAS  Google Scholar 

  68. Chasin, L. A., Feldman, A., Konstam, M. & Urlaub, G. Reversion of a chinese hamster cell auxotrophic mutant. Proc. Natl Acad. Sci. USA 71, 718–722 (1974).

    CAS  PubMed  Google Scholar 

  69. Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Munier-Lehmann, H., Vidalain, P. O., Tangy, F. & Janin, Y. L. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem. 56, 3148–3167 (2013).

    CAS  PubMed  Google Scholar 

  74. Herrmann, M. L., Schleyerbach, R. & Kirschbaum, B. J. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47, 273–289 (2000).

    CAS  PubMed  Google Scholar 

  75. Sykes, D. B. et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 (2016).

    CAS  PubMed  Google Scholar 

  76. Jeong, S. M. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450–463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brown, K. K., Spinelli, J. B., Asara, J. M. & Toker, A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 7, 391–399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

    CAS  PubMed  Google Scholar 

  79. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    CAS  Google Scholar 

  80. Mullen, A. R. et al. Reductive carboxilation supports growth in tumor cells with defective mitochondria. Nature 481, 385–388 (2012).

    CAS  Google Scholar 

  81. Jiang, L. et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255–258 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun, J., Aluvila, S., Kotaria, R., Mayor, J. A., Walters, E. D. & Kaplan, R. Mitochondrial and plasma membrane citrate transporters: discovery of selective inhibitors and application to structure/function analysis. Mol. Cell Pharmacol. 2, 101–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, C. W. et al. Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 provides a tertiary level of regulation of fatty acid synthesis. Proc. Natl Acad. Sci. USA 107, 9626–9631 (2010).

    CAS  PubMed  Google Scholar 

  84. Glerum, D. M., Claeys, D., Mertens, W. SpringerAmpamp; Azzi, A. The tricarboxylate carrier from rat liver mitochondria. Euro. J. Biochem. 194, 681–684 (1990).

    CAS  Google Scholar 

  85. Zara, V. & Gnoni, G. V. V. Effect of starvation on the activity of the mitochondrial tricarboxylate carrier. Biochim. Biophys. acta 1239, 33–38 (1995).

    PubMed  Google Scholar 

  86. Lee, J. V. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Londono Gentile, T. et al. DNMT1 is regulated by ATP-citrate lyase and maintains methylation patterns during adipocyte differentiation. Mol. Cell. Biol. 33, 3864–3878 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xiao, M. et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, L. et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24, 685–700 (2016).

    CAS  PubMed  Google Scholar 

  91. Matthews, G. D., Gur, N., Koopman, W. J., Pines, O. & Vardimon, L. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells. J. Cell Sci. 123, 351–359 (2010).

    CAS  PubMed  Google Scholar 

  92. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Frigerio, F., Casimir, M., Carobbio, S. & Maechler, P. Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. Biochim. Biophys. acta 1777, 965–972 (2008).

    CAS  PubMed  Google Scholar 

  95. Coloff, J. L. et al. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab. 23, 867–880 (2016).

    CAS  PubMed  Google Scholar 

  96. Perez-Arellano, I., Carmona-Alvarez, F., Martinez, A. I., Rodriguez-Diaz, J. & Cervera, J. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci. 19, 372–382 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Palmieri, F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Med. 34, 465–484 (2013).

    CAS  Google Scholar 

  98. Bahl, J. J., Matsuda, M., DeFronzo, R. A. & Bressler, R. In vitro and in vivo suppression of gluconeogenesis by inhibition of pyruvate carboxylase. Biochem. Pharmacol. 53, 67–74 (1997).

    CAS  PubMed  Google Scholar 

  99. Kumashiro, N. et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 62, 2183–2194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Monne, M. & Palmieri, F. Antiporters of the mitochondrial carrier family. Curr. Topics Membranes 73, 289–320 (2014).

    CAS  Google Scholar 

  101. Yang, J., Kalhan, S. C. & Hanson, R. W. What is the metabolic role of phosphoenolpyruvate carboxykinase? J. Biol. Chem. 284, 27025–27029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dailey, H. A. & Meissner, P. N. Erythroid heme biosynthesis and its disorders. Cold Spring Harb. Persp. Med. 3, a011676 (2013).

    Google Scholar 

  103. Ulrich, D. L. et al. ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. J. Biol. Chem. 287, 12679–12690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonkowsky, H. L., Bloomer, J. R., Ebert, P. S. & Mahoney, M. J. Heme synthetase deficiency in human protoporphyria: demonstration of the defect in liver and cultured skin fibroblasts. J. Clin. Investig. 56, 1139–1148 (1975).

    CAS  PubMed  Google Scholar 

  105. Yang, H. et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. van de Ven, R. A. H., Santos, D. & Haigis, M. C. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med. 23, 320–331 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Todisco, S., Agrimi, G., Castegna, A. & Palmieri, F. Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281, 1524–1531 (2006).

    CAS  PubMed  Google Scholar 

  110. Schantz, P. G., Sjoberg, B. & Svedenhag, J. Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training. Acta Physiol. Scand. 128, 397–407 (1986).

    CAS  PubMed  Google Scholar 

  111. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hayes, D. J. et al. An unusual metabolic myopathy: a malate—aspartate shuttle defect. J. Neurol. Sci. 82, 27–39 (1987).

    CAS  PubMed  Google Scholar 

  113. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gnoni, G. V., Priore, P., Geelen, M. J. & Siculella, L. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 61, 987–994 (2009).

    CAS  PubMed  Google Scholar 

  117. Palmieri, F. Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. acta 1777, 564–578 (2008).

    CAS  PubMed  Google Scholar 

  118. Mracek, T., Drahota, Z. & Houstek, J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. acta 1827, 401–410 (2013).

    CAS  PubMed  Google Scholar 

  119. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lewis, C. A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 5, e10575 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Tedeschi, P. M. et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 4, e877 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, 453–462 (2014).

    Google Scholar 

  124. Wallace, J. L. & Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 14, 329–345 (2015).

    CAS  PubMed  Google Scholar 

  125. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Rai, R., Saraswat, V. A. & Dhiman, R. K. Gut microbiota: its role in hepatic encephalopathy. J. Clin. Exp. Hepatol. 5, 29–36 (2015).

    Google Scholar 

  127. Eng, C. H., Yu, K., Lucas, J., White, E. & Abraham, R. T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).

    PubMed  Google Scholar 

  128. Braissant, O., McLin, V. A. & Cudalbu, C. Ammonia toxicity to the brain. J. Inherit. Metab. Dis. 36, 595–612 (2013).

    CAS  PubMed  Google Scholar 

  129. Morris, S. M. Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutrit. 22, 87–105 (2002).

    CAS  Google Scholar 

  130. McCudden, C. R. & Powers-Lee, S. G. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I. J. Biol. Chem. 271, 18285–18294 (1996).

    CAS  PubMed  Google Scholar 

  131. Kim, J. et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546, 168–172 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jones, E. A., Smallwood, R. A., Craigie, A. & Rosenoer, V. M. The enterohepatic circulation of urea nitrogen. Clin. Sci. 37, 825–836 (1969).

    CAS  PubMed  Google Scholar 

  133. Brusilow, S. W. Urea cycle disorders: clinical paradigm of hyperammonemic encephalopathy. Prog. Liver Dis. 13, 293–309 (1995).

    CAS  PubMed  Google Scholar 

  134. Kenny, D. J. & Balskus, E. P. Engineering chemical interactions in microbial communities. Chem. Soc. Rev. 47, 1705–1729 (2017).

    Google Scholar 

  135. Treberg, J. R., Brosnan, M. E., Watford, M. & Brosnan, J. T. On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome. Advanc. Enzyme Reg. 50, 34–43 (2010).

    Google Scholar 

  136. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Block, K., Gorin, Y. & Abboud, H. E. Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl Acad. Sci. USA 106, 14385–14390 (2009).

    CAS  PubMed  Google Scholar 

  138. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  139. Chang, T. S. et al. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975–41984 (2004).

    CAS  PubMed  Google Scholar 

  140. Schneider, M. et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB 23, 3233–3242 (2009).

    CAS  Google Scholar 

  141. Cox, A. G., Winterbourn, C. C. & Hampton, M. B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem. J. 425, 313–325 (2009).

    PubMed  Google Scholar 

  142. Rhee, S. G. Cell signaling: H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    PubMed  Google Scholar 

  143. Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J. Biol. Chem. 272, 217–221 (1997).

    CAS  PubMed  Google Scholar 

  144. Leslie, N. R. et al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 22, 5501–5510 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    CAS  PubMed  Google Scholar 

  146. Finley, L. W. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19, 416–428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wheeler, M. L. & Defranco, A. L. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J. Immunol. 189, 4405–4416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Linden, D. R., Levitt, M. D., Farrugia, G. & Szurszewski, J. H. Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function. Antioxid. Redox Signal. 12, 1135–1146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Levitt, M. D., Abdel-Rehim, M. S. & Furne, J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signal. 15, 373–378 (2011).

    CAS  PubMed  Google Scholar 

  152. Luna-Sanchez, M. et al. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol. Med. 9, 78–95 (2017).

    CAS  PubMed  Google Scholar 

  153. Lash, L. H. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chemico-Biol. Interact. 163, 54–67 (2006).

    CAS  Google Scholar 

  154. Szabo, C. et al. Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl Acad. Sci. USA 110, 12474–12479 (2013).

    CAS  PubMed  Google Scholar 

  155. Rigottier-Gois, L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 7, 1256–1261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, 1251–1257 (2016).

    Google Scholar 

  157. Szendroedi, J., Phielix, E. & Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 92–103 (2011).

    PubMed  Google Scholar 

  158. Bratic, A. & Larsson, N. G. The role of mitochondria in aging. J. Clin. Investig. 123, 951–957 (2013).

    CAS  PubMed  Google Scholar 

  159. Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    PubMed  Google Scholar 

  162. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    CAS  PubMed  Google Scholar 

  163. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Sarah Tucker and Liam Kelley for editing this article. J.B.S is supported by the National Science Foundation Graduate Research Fellowship DGE1144152. M.C.H. is supported by the Ludwig Center at Harvard and NIH grant R01CA213062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia C. Haigis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinelli, J.B., Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20, 745–754 (2018). https://doi.org/10.1038/s41556-018-0124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0124-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing