Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cargo recognition and degradation by selective autophagy

An Author Correction to this article was published on 07 June 2023

This article has been updated

Abstract

Macroautophagy, initially described as a non-selective nutrient recycling process, is essential for the removal of multiple cellular components. In the past three decades, selective autophagy has been characterized as a highly regulated and specific degradation pathway for removal of unwanted cytosolic components and damaged and/or superfluous organelles. Here, we discuss different types of selective autophagy, emphasizing the role of ligand receptors and scaffold proteins in providing cargo specificity, and highlight unanswered questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Cvt pathway, aggrephagy and pexophagy.
Fig. 2: Mitophagy, reticulophagy and nucleophagy.
Fig. 3: Lysophagy and xenophagy.

Similar content being viewed by others

Change history

References

  1. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Parzych, K. R. & Klionsky, D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal 20, 460–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin, M., Liu, X. & Klionsky, D. J. SnapShot: selective autophagy. Cell 152, 368–368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hutchins, M. U., Veenhuis, M. & Klionsky, D. J. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J. Cell. Sci. 112, 4079–4087 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hung, Y. H., Chen, L. M., Yang, J. Y. & Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).

    Article  PubMed  Google Scholar 

  8. Nakatogawa, H. & Mochida, K. Reticulophagy and nucleophagy: new findings and unsolved issues. Autophagy 11, 2377–2378 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sarkar, S., Ravikumar, B. & Rubinsztein, D. C. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol. 453, 83–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leber, R., Silles, E., Sandoval, I. V. & Mazon, M. J. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J. Biol. Chem. 276, 29210–29217 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7, 1131–1141 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shintani, T., Huang, W.-P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825–837 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yorimitsu, T. & Klionsky, D. J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16, 1593–1605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfaffenwimmer, T. et al. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 15, 862–870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki, K., Kondo, C., Morimoto, M. & Ohsumi, Y. Selective transport of α-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285, 30019–30025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852–2868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336–345 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogov, V. V. et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7, 1131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid-β accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Winslow, A. R. et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190, 1023–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Lu, K., Psakhye, I. & Jentsch, S. A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance. Autophagy 10, 2381–2382 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, P. K., Hailey, D. W., Mullen, R. T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl Acad. Sci. USA 105, 20567–20574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, Z., Li, Y., Gasparski, A. N., Abeliovich, H. & Greenberg, M. L. Cardiolipin regulates mitophagy through the protein kinase c pathway. J. Biol. Chem. 292, 2916–2923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lamark, T., Kirkin, V., Dikic, I. & Johansen, T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986–1990 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Filimonenko, M. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 38, 265–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clausen, T. H. et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6, 330–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lystad, A. H. et al. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep. 15, 557–565 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simonsen, A. et al. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J. Cell Sci. 117, 4239–4251 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Korolchuk, V. I., Menzies, F. M. & Rubinsztein, D. C. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393–1398 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Lu, K., den Brave, F. & Jentsch, S. Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nat. Cell Biol. 19, 732–739 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Wurzer, B. et al. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife 4, e08941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klionsky, D. J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell. Dev. Biol. 15, 1–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Nazarko, T. Y., Farre, J. C. & Subramani, S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell 20, 3828–3839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farre, J. C., Burkenroad, A., Burnett, S. F. & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14, 441–449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153, 381–396 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nazarko, T. Y. et al. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J. Cell Biol. 204, 541–557 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939–952 (2013).

    CAS  PubMed  Google Scholar 

  49. Yamashita, S., Abe, K., Tatemichi, Y. & Fujiki, Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 10, 1549–1564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nordgren, M. et al. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11, 1326–1340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259–1269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grou, C. P. et al. The peroxisomal protein import machinery – a case report of transient ubiquitination with a new flavor. Cell Mol. Life Sci. 66, 254–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sargent, G. et al. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J. Cell Biol. 214, 677–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hara-Kuge, S. & Fujiki, Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp. Cell Res. 314, 3531–3541 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, L., Sakakibara, K., Chen, Q. & Okamoto, K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 24, 787–795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, K., Jin, M., Liu, X. & Klionsky, D. J. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 9, 1828–1836 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Redmann, M., Dodson, M., Boyer-Guittaut, M., Darley-Usmar, V. & Zhang, J. Mitophagy mechanisms and role in human diseases. Int. J. Biochem. Cell Biol. 53, 127–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurihara, Y. et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J. Biol. Chem. 287, 3265–3272 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Stotland, A. & Gottlieb, R. A. Mitochondrial quality control: easy come, easy go. Biochim. Biophys. Acta 1853, 2802–2811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Von Stockum, S., Nardin, A., Schrepfer, E. & Ziviani, E. Mitochondrial dynamics and mitophagy in Parkinson’s disease: a fly point of view. Neurobiol. Dis. 90, 58–67 (2016).

    Article  Google Scholar 

  61. Aihara, M. et al. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell. Sci. 127, 3184–3196 (2014).

    CAS  PubMed  Google Scholar 

  62. Kanki, T., Furukawa, K. & Yamashita, S. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853, 2756–2765 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386–32393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Mao, K., Wang, K., Liu, X. & Klionsky, D. J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26, 9–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kondo-Okamoto, N. et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631–10638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aoki, Y. et al. Phosphorylation of serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206–3217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788–794 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mao, K., Wang, K., Zhao, M., Xu, T. & Klionsky, D. J. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J. Cell Biol. 193, 755–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abeliovich, H., Zarei, M., Rigbolt, K. T., Youle, R. J. & Dengjel, J. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat. Commun. 4, 2789 (2013).

    Article  PubMed  Google Scholar 

  71. Georgakopoulos, N. D., Wells, G. & Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, Y., Chiang, W. C., Sumpter, R. Jr., Mishra, P. & Levine, B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Durcan, T. M. & Fon, E. A. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Trempe, J. F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Yamano, K. & Youle, R. J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aerts, L., Craessaerts, K., De Strooper, B. & Morais, V. A. PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem. 290, 2798–2811 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Y. & Dorn, G. W. II PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Fang, L. et al. Mitochondrial function in neuronal cells depends on p97/VCP/Cdc48-mediated quality control. Front. Cell Neurosci. 9, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. McLelland, G. L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214, 275–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsushima, M. et al. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Gene. Chromosome Canc. 21, 230–235 (1998).

    Article  CAS  Google Scholar 

  92. Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sheng, Z. H. & Cai, Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13, 77–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Hsieh, C. H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19, 709–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Novak, I. & Dikic, I. Autophagy receptors in developmental clearance of mitochondria. Autophagy 7, 301–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, J. et al. A short linear motif in BNIP3L (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy 8, 1325–1332 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ni, H. M., Williams, J. A. & Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4, 6–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Chourasia, A. H., Boland, M. L. & Macleod, K. F. Mitophagy and cancer. Cancer Metab. 3, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell. Biol. 14, 177–185 (2012).

    Article  PubMed  Google Scholar 

  101. Bordi, M., Nazio, F. & Campello, S. The close interconnection between mitochondrial dynamics and mitophagy in cancer. Front. Oncol. 7, 81 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Palikaras, K., Lionaki, E. & Tavernarakis, N. Mitophagy: in sickness and in health. Mol. Cell Oncol. 3, e1056332 (2016).

    Article  PubMed  Google Scholar 

  104. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shirihai, O. S., Song, M. & Dorn, G. W. II How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835–1849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, M. et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12, 689–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sentelle, R. D. et al. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol. 8, 831–838 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schuck, S., Gallagher, C. M. & Walter, P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078–4088 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Changou, C. A. et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl Acad. Sci. USA 111, 14147–14152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mijaljica, D., Prescott, M. & Devenish, R. J. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS ONE 7, e40013 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kvam, E. & Goldfarb, D. S. Structure and function of nucleus-vacuole junctions: outer-nuclear-membrane targeting of Nvj1p and a role in tryptophan uptake. J. Cell Sci. 119, 3622–3633 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Colombo, M. I., Gutierrez, M. G. & Romano, P. S. The two faces of autophagy: Coxiella and Mycobacterium. Autophagy 2, 162–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Zheng, Y. T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. van Zutphen, T. et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290–301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kaur, J. & Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705–5724 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Asano, T. et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell Biol. 31, 2040–2052 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mancias, J. D. et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4, e10308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Delbridge, L. M., Mellor, K. M., Taylor, D. J. & Gottlieb, R. A. Myocardial autophagic energy stress responses-macroautophagy, mitophagy, and glycophagy. Am. J. Physiol. -Heart C. 308, 1194–1204 (2015).

    Article  Google Scholar 

  135. Ueno, T. & Komatsu, M. Autophagy in the liver: functions in health and disease. Nat. Rev. Gastroenterol. Hepatol. 14, 170–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, Y., Zhang, M., Kelly, A. R. & Cheng, A. The carbohydrate-binding domain of overexpressed STBD1 is important for its stability and protein-protein interactions. Biosci. Rep. 34 (2014).

Download references

Acknowledgements

This work was supported by NIH grant GM053396 to D.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatica, D., Lahiri, V. & Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20, 233–242 (2018). https://doi.org/10.1038/s41556-018-0037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-018-0037-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing