Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local control of intracellular microtubule dynamics by EB1 photodissociation

Abstract

End-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein–protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. By contrast, blue-light-mediated π-EB1 photodissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (also known as ch-TOG and XMAP215). Local π-EB1 photodissociation allows subcellular control of microtubule dynamics at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as a template to optically control other intracellular protein activities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design of a light-sensitive EB1 variant that can replace endogenous EB1 function.
Fig. 2: Spatially and temporally reversible photodissociation of +TIP complexes.
Fig. 3: Attenuation of MT growth by π-EB1 photodissociation.
Fig. 4: π-EB1 photodissociation-induced MT cytoskeleton reorganization.
Fig. 5: EB1-independent MT plus-end localization of the MT polymerase CKAP5.
Fig. 6: Aversive cell turning in response to local π-EB1 photodissociation.

References

  1. Ohi, R. & Zanic, M. Ahead of the curve: new insights into microtubule dynamics. F1000Res. 5, 314 (2016).

    Article  Google Scholar 

  2. Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell. Biol. 16, 711–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Kumar, P. & Wittmann, T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol. 22, 418–428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, P. et al. GSK3beta phosphorylation modulates CLASP–microtubule association and lamella microtubule attachment. J. Cell. Biol. 184, 895–908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pemble, H., Kumar, P., van Haren, J. & Wittmann, T. GSK3-mediated CLASP2 phosphorylation modulates kinetochore dynamics. J. Cell. Sci. 130, 1404–1412 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Smyth, J. T. et al. Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr. Biol. 22, 1487–1493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Vaart, B. et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J. Cell. Biol. 193, 1083–1099 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. van Haren, J. et al. Dynamic microtubules catalyze formation of navigator–TRIO complexes to regulate neurite extension. Curr. Biol. 24, 1778–1785 (2014).

    Article  PubMed  Google Scholar 

  9. Wu, X. et al. Skin stem cells orchestrate directional migration by regulating microtubule–ACF7 connections through GSK3beta. Cell 144, 341–352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montenegro, G. S. et al. In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Curr. Biol. 20, 1717–1722 (2010).

    Article  Google Scholar 

  11. Maurer, S. P. et al. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371–382 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Repina, N. A. et al. At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13–39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell. 27, 976–991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Komarova, Y. et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell. Biol. 184, 691–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Skube, S. B., Chaverri, J. M. & Goodson, H. V. Effect of GFP tags on the localization of EB1 and EB1 fragments in vivo. Cytoskelet. (Hoboken) 67, 1–12 (2010).

    Article  CAS  Google Scholar 

  19. Dragestein, K. A. et al. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J. Cell. Biol. 180, 729–737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seetapun, D. et al. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22, 1681–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, X., Habedanck, R. & Nigg, E. A. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell. 17, 634–644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, T. et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 41, 4743–4754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller, P. M. et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat. Cell. Biol. 11, 1069–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Groot, C. O. et al. Molecular insights into mammalian end-binding protein heterodimerization. J. Biol. Chem. 285, 5802–5814 (2010).

    Article  PubMed  Google Scholar 

  25. Christie, J. M. et al. Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46, 9310–9319 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ettinger, A. & Wittmann, T. Fluorescence live cell imaging. Methods Cell. Biol. 123, 77–94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gierke, S. & Wittmann, T. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling. Curr. Biol. 22, 753–762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell. Biol. 183, 1223–1233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaverina, I. & Straube, A. Regulation of cell migration by dynamic microtubules. Semin. Cell. Dev. Biol. 22, 968–974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell. Biol. 161, 845–851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakamura, S. et al. Dissecting the nanoscale distributions and functions of microtubule-end-binding proteins EB1 and ch-TOG in interphase HeLa cells. PLoS. ONE 7, e51442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouchet, B. P. et al. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell. 39, 708–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell. Dev. Biol. 29, 471–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell. Sci. 114, 3795–3803 (2001).

    CAS  PubMed  Google Scholar 

  36. Bouchet, B. P. & Akhmanova, A. Microtubules in 3D cell motility. J. Cell. Sci. 130, 39–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Duellberg, C. et al. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell. Biol. 16, 804–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Usherenko, S. et al. Photo-sensitive degron variants for tuning protein stability by light. BMC Syst. Biol. 8, 128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Dagliyan, O. et al. Engineering extrinsic disorder to control protein activity in living cells. Science 354, 1441–1444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar, A. et al. Short linear sequence motif LxxPTPh targets diverse proteins to growing microtubule ends. Structure 25, 924–932 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Vitre, B. et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat. Cell. Biol. 10, 415–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Maurer, S. P. et al. EB1 accelerates two conformational transitions important for microtubule maturation and dynamics. Curr. Biol. 24, 372–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duellberg, C., Cade, N. I., Holmes, D. & Surrey, T. The size of the EB cap determines instantaneous microtubule stability. eLife 5, e13470 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stehbens, S. J. et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat. Cell. Biol. 16, 558–573 (2014).

    Article  Google Scholar 

  46. Mitchison, T. J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell. 23, 1–6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Borowiak, M. et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell 162, 403–411 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Adikes, R. C., Hallett, R. A., Saway, B. F., Kuhlman, B. & Slep, K. C. Control of microtubule dynamics using an optogenetic microtubule plus end–F-actin cross-linker. J. Cell Biol. 217, jcb.201705190 (2017).

    Google Scholar 

  49. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Haren, J. & Wittmann, T. Generation of cell lines with light-controlled microtubule dynamics. Protoc. Exch., https://doi.org/10.1038/protex.2017.155 (2018).

    Google Scholar 

  54. Stehbens, S., Pemble, H., Murrow, L. & Wittmann, T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol. 504, 293–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Ettinger, A., van Haren, J., Ribeiro, S. A. & Wittmann, T. Doublecortin is excluded from growing microtubule ends and recognizes the GDP-microtubule lattice. Curr. Biol. 26, 1549–1555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matov, A. et al. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat. Methods 7, 761–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012).

    Article  PubMed  Google Scholar 

  60. Stehbens, S. J. & Wittmann, T. Analysis of focal adhesion turnover: a quantitative live-cell imaging example. Methods Cell Biol. 123, 335–346 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Brown, A. M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Prog. Biomed. 65, 191–200 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R01 GM079139, R01 GM094819 and S10 RR26758 to T.W., and P41 EB002025 and R35 GM122596 to K.M.H. We thank all members of the Cell and Tissue Biology community for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.v.H. and T.W. designed the experiments, analysed the data and wrote the manuscript. J.v.H. performed most of the experiments and generated most of the reagents. A.E. and R.A.C. contributed to reagent generation and experimental work. H.W. and K.M.H. contributed unpublished reagents.

Corresponding author

Correspondence to Torsten Wittmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, and Supplementary Table and Supplementary Video descriptions.

In the version of the Supplementary Information originally published with this Article, Supplementary Tables 2 and 3 were incorrectly described as ‘List of antibodies’ and ‘List of PCR primer and gRNA sequences’, respectively. The correct descriptions are ‘List of PCR primers and gRNA sequences’ for Supplementary Table 2, and ‘Statistics source data’ for Supplementary Table 3. In addition, Supplementary Video 7 was incorrectly described as ‘Local control of MT growth. CKAP5 association with MT ends is independent of π-EB1 photo-dissociation’. The correct description is ‘CKAP5 association with MT ends is independent of π-EB1 photo-dissociation’. These errors have now been corrected. Further, Supplementary Figures 1–5 of the Supplementary Information file published were of low quality. The file has now been replaced to rectify this.

Life Sciences Reporting Summary

Supplementary Table 1

List of antibodies.

Supplementary Table 2

List of PCR primers and gRNA sequences.

Supplementary Table 3

Statistics source data.

Videos

Supplementary Video 1

Light-mediated SLAIN2 dissociation from MT ends in a π-EB1/EB1 shRNA cell.

Supplementary Video 2

Spatiotemporal control of π-EB1 photo-dissociation.

Supplementary Video 3

Reversible inhibition of MT growth by π-EB1 photo-dissociation.

Supplementary Video 4

Local control of MT growth

Supplementary Video 5

Light-induced MT depolymerization by π-EB1 photo-dissociation.

Supplementary Video 6

Light-induced MT reorganization by π-EB1 photo-dissociation.

Supplementary Video 7

CKAP5 association with MT ends is independent of π-EB1 photo-dissociation.

Supplementary Video 8

CKAP5 dynamics in EB1/3–/– cells.

Supplementary Video 9

Light-induced MT growth inhibition in π-EB1-expressing EB1/3–/– cells.

Supplementary Video 10

π-EB1-expressing EB1/3–/– cell trapped in a virtual blue light box.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Haren, J., Charafeddine, R.A., Ettinger, A. et al. Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol 20, 252–261 (2018). https://doi.org/10.1038/s41556-017-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0028-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing