Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis

An Author Correction to this article was published on 14 June 2024

This article has been updated

Abstract

Receptor-interacting protein kinase 3 (RIP3)-regulated production of reactive oxygen species (ROS) positively feeds back on tumour necrosis factor (TNF)-induced necroptosis, a type of programmed necrosis. Glutamine catabolism is known to contribute to RIP3-mediated ROS induction, but the major contributor is unknown. Here, we show that RIP3 activates the pyruvate dehydrogenase complex (PDC, also known as PDH), the rate-limiting enzyme linking glycolysis to aerobic respiration, by directly phosphorylating the PDC E3 subunit (PDC-E3) on T135. Upon activation, PDC enhances aerobic respiration and subsequent mitochondrial ROS production. Unexpectedly, mixed-lineage kinase domain-like (MLKL) is also required for the induction of aerobic respiration, and we further show that it is required for RIP3 translocation to meet mitochondria-localized PDC. Our data uncover a regulation mechanism of PDC activity, show that PDC activation by RIP3 is most likely the major mechanism activated by TNF to increase aerobic respiration and its by-product ROS, and suggest that RIP3-dependent induction of aerobic respiration contributes to pathologies related to oxidative stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TNF induces an increase in aerobic respiration in a RIP3-dependent manner.
Fig. 2: Induction of OCR is not due to the side effect of zVAD.
Fig. 3: TNF-induced increase in aerobic respiration is responsible for ROS induction in necroptosis.
Fig. 4: PDC is positively involved in TNF-induced necroptosis.
Fig. 5: RIP3 targets PDC to upregulate aerobic respiration.
Fig. 6: RIP3 activates PDC by phosphorylating PDC-E3 on T135.
Fig. 7: MLKL is required for PDC activation.

Similar content being viewed by others

Change history

References

  1. Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629–2634 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, X. N. et al. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell. Death Differ. 21, 1709–1720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orozco, S. et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell. Death Differ. 21, 1511–1521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, W. et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell. Biol. 17, 434–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. USA 109, 5322–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell. 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell. Res. 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell. Rep. 7, 971–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell. Biol. 16, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Goossens, V. et al. Redox regulation of TNF signaling. BioFactors 10, 145–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V., Haegeman, G. & Fiers, W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 12, 3095–3104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tait, S. W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell. Rep. 5, 878–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schenk, B. & Fulda, S. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene 34, 5796–5806 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 14329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, Y. S., Morgan, M. J., Choksi, S. & Liu, Z. G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell. 26, 675–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Turrens, J. F., Freeman, B. A., Levitt, J. G. & Crapo, J. D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401–410 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R. & Brand, M. D. Mitochondrial proton and electron leaks. Essays Biochem. 47, 53–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, R. A., Bowker-Kinley, M. M., Huang, B. & Wu, P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzym. Reg. 42, 249–259 (2002).

    Article  CAS  Google Scholar 

  26. Roche, T. E. et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid. Res. Mol. Biol. 70, 33–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Hitosugi, T. et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell. 44, 864–877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Temkin, V., Huang, Q., Liu, H., Osada, H. & Pope, R. M. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol. Cell. Biol. 26, 2215–2225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanson, G. T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell. Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Festjens, N. et al. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell. Death Differ. 13, 166–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Goossens, V., Grooten, J. & Fiers, W. The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells. J. Biol. Chem. 271, 192–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Zachar, Z. et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol. Med. 89, 1137–1148 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. El Sayed, S. M. et al. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study. Chin. J. Cancer 33, 356–364 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Deck, L. M. et al. Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. J. Med. Chem. 41, 3879–3887 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Hiromasa, Y., Fujisawa, T., Aso, Y. & Roche, T. E. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J. Biol. Chem. 279, 6921–6933 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Schell, J. C. et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol. Cell. 56, 400–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl. Acad. Sci. USA 110, E3109–3118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong, C. Q. et al. Quantitative phosphoproteomic analysis of RIP3-dependent protein phosphorylation in the course of TNF-induced necroptosis. Proteomics 14, 713–724 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Grassian, A. R., Metallo, C. M., Coloff, J. L., Stephanopoulos, G. & Brugge, J. S. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes. Dev. 25, 1716–1733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez, D. A. et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell. Death Differ. 23, 76–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hennet, T., Richter, C. & Peterhans, E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem. J. 289, 587–592 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joplin, R. et al. Subcellular localization of pyruvate dehydrogenase dihydrolipoamide acetyltransferase in human intrahepatic biliary epithelial cells. J. Pathol. 176, 381–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Turrens, J. F. & Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Starkov, A. A. et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24, 7779–7788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Malatesha, G., Singh, N. K., Bharija, A., Rehani, B. & Goel, A. Comparison of arterial and venous pH, bicarbonate, PCO2 and PO2 in initial emergency department assessment. Emerg. Med. J. 24, 569–571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell. Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).

    Article  PubMed  Google Scholar 

  54. Moriwaki, K., Bertin, J., Gough, P. J., Orlowski, G. M. & Chan, F. K. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell. Death Dis. 6, e1636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell. Res. 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell. Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Yoshida, S. et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 110, E1604–1612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanson, G. T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Waypa, G. B. et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 106, 526–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Wu, X. et al. Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol. Cell. Proteom. 11, 1640–1651 (2012).

    Article  Google Scholar 

  66. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. French, J. B. et al. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351, 733–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell. Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J. & Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4, 1582–1590 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91429301), the National Basic Research Program of China (973 Program; 2015CB553800 and 2014CB541804), the National Natural Science Foundation of China (31420103910, 31330047 and 81788104), the 111 Project (B12001), the National Science Foundation of China for Fostering Talents in Basic Research (J1310027) and the Open Research Fund of State Key Laboratory of Cellular Stress Biology, Xiamen University.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. and J.H. conceived and designed the experiments. Z.Y., Y.W., Y.Z. and X.C. performed the experiments. X.H. and C.-Q.Z. performed the GC-MS and MS experiments and analysed the obtained results. H.N., Y.L. and J.W. helped to prepare cell lines for the study. S.Z. and D.Z. provided technical support. Z.Y. and J.H. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Jiahuai Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Legends, Table Legends.

Life Sciences Reporting Summary

Supplementary Table 1

Statistics source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, Y., Zhang, Y. et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 20, 186–197 (2018). https://doi.org/10.1038/s41556-017-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0022-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing